
A Guide to Statistical Methods for Program 
Impact Evaluation

How Do We Know If a Program 
Made a Difference?

Peter M. Lance  •  David K. Guilkey   •  Aiko Hattori  •  Gustavo Angeles





How do we know if a program made a
difference?

A guide to statistical methods for program
impact evaluation

Peter M. Lance

David K. Guilkey

Aiko Hattori

Gustavo Angeles

Suggested citation:
Lance, P., D. Guilkey, A. Hattori and G. Angeles. (2014). How do we know if a program made
a difference? A guide to statistical methods for program impact evaluation. Chapel Hill, North
Carolina: MEASURE Evaluation.

ISBN: 978-0-692-23861-5

Prepared by MEASURE Evaluation, University of North Carolina at Chapel Hill.

MEASURE Evaluation is funded through the U.S. Agency for International Development (USAID)
under the terms of cooperative agreement GHA-A-00-08-00003-00, which is implemented by the
Carolina Population Center at the University of North Carolina at Chapel Hill, with Futures Group,
ICF International, John Snow, Inc., Management Sciences for Health, and Tulane University. The
views expressed in this publication do not necessarily reflect the views of USAID or the United
States government. MS-14-87 (May 2014).



Cover image File:Snow-cholera-map-1.jpg retrieved from Wikimedia Commons is licensed under
PD-old-70.



i

Asking for Forgiveness

The Universe is change. Life is opinion.
-Marcus Aurelius

There is a long-running, vigorous and evolving methodological debate about the appropriate or
optimal way to evaluate the impact of a program. This manual strives not to convince readers
of the merits of one particular alternative or another, but instead simply to present the various
options in as approachable a fashion as possible and then let them decide for themselves where
they stand. In other words, it strives to be impartial. However, that is probably an impossible
standard. We cannot help but have our own views, which probably subtly intrude on the manual.
To those who disagree with us we ask for their pardon but remind them that this shortcoming was
probably inevitable.

Writing this manual has required review of a large number of contributions to the literature on
impact evaluation methods, as well as many actual impact evaluations. Many of these are cited in
this manual, which has now been through hundreds of revisions. In the course of those revisions,
with the attendant re-arrangement, deletion and insertion, it is possible that some citations were
accidentally dropped and others have become un-moored from the train of thought for which they
were originally introduced. We offer unqualified apology for all such instances.

That said, updated versions of this manual will be released from time to time. We invite those
with comments or criticism of the substance of the manual to submit their thoughts so that they
can inform future versions. Errors and omissions in citations that are communicated to us will be
corrected immediately.
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Prologue

Writing this manual has been a long journey, one that began in the Spring of 2005 while teaching
a class for MEASURE Evaluation at the University of Hawaii at Manoa on the econometrics of
program impact evaluation, with applications to health, nutrition and population. The students
were international public health professionals drawn from around the world. Their backgrounds
were not necessarily rooted in the statistics of causal modelling, which is really at the heart of the
subject at hand.

They came to the class with rich and diverse technical backgrounds and a clear common need:
to know more about the methods used to evaluate the impact of health, nutrition and population
programs. They wanted, needed, to be better able to assess the evidence presented regarding the
impact of health, nutrition and population programs in their own nations. They needed to be
able to do this so that they could act meaningfully and effectively on such evidence, in the process
crafting better programs in the hope of improving welfare in their societies.

Unfortunately, for them the body of literature describing and assessing the methods for pro-
gram impact evaluation was largely inaccessible. This literature, concentrated in econometrics and
statistics, featured dense, often inconsistent (across manuscripts and major players in the literature)
mathematics typically linked with limited or no intuitive explanation.

The challenge for us as instructors was somehow to build a bridge for these students to the
rich insights of the program impact evaluation literature. It is impossible to eschew mathematics
altogether in explaining effectively program impact evaluation methodologies (more on this below)
but we decided to adopt the simplest, most consistent mathematics (including at the mundane level
of notation) possible. We tried to inform the math with careful intuitive explanations. Finally, we
tried to strike a balance between developing nuanced understanding of particular topics (the trees,
in some sense) and recognizing the relationships between the various program impact evaluation
methodologies (the forest).

At the core of our approach was a simple belief: behind the mathematically dense discussion
of the various methods for program impact evaluations was a far more approachable intuition. We
tried to tease that intuition out from the math, and put it at the center of the discussion.

That said, you cannot have a discussion of program impact evaluation methods that avoids math
while still delivering nuanced understanding. Above all, math allows one to be precise about what
they mean in a fashion that words alone cannot. Math brings focus and specificity to the discussion
in a fashion that words alone, no matter how carefully considered, cannot: there would always be
some reasonable scope for misinterpretation with words alone. It was also necessary to use math
because it empowers the students: a gentle, carefully guided introduction to the mathematics of
program impact evaluation provides them with tools they need to continue their journey in the
literature after the class has concluded.

This manual is designed to provide the sort of introduction to program impact evaluation that
we attempted in that class, and for the same sort of audience. To be sure, this is a mathematically
oriented manual. It has to be in order to convey certain subtle ideas precisely. At the same time,

ix



x PROLOGUE

math does not stand on its own in this manual. Rather, it is complemented by far richer intuitive
discussion than is often the case in the literature.

Moreover, one element of the math is a relatively simple behavioral model through which nearly
all estimators in the manual are explored. This will give the reader some sense of the kind of
behavioral, and hence data generating, processes motivating these estimators and shaping the data
structures they require.

Empirical examples run through much of the manual to provide illustrations of these behav-
ioral models and impact evaluation estimators using simulated data that will hopefully strengthen
the link for the reader between behavior, data structure, impact evaluation models and model
performance. We chose to use simulated data for a number of reasons, but above all because sim-
ulated data allows us to establish explicitly links between behavior and observed data, to isolate
the particular kind of statistical complications motivating each impact evaluation estimator and
to examine model performance (which we can do because simulated data allows us to define true
program impact, providing a clear yardstick against which to assess the various estimates generated
by the program impact estimators).

A primary audience for this manual are those who motivated its writing in the first place:
public health professionals at programs, government agencies and NGOs who are the consumers
of the information generated by program impact evaluations. These are the professionals who
often must commission impact evaluations. They serve as active stakeholders during the process
of designing impact evaluations, providing key inputs about where the focus should lie given the
advantages, disadvantages and costs of alternative impact evaluation approaches. Finally, they
then must assess the information generated by the impact evaluation to decide how it will guide
programmatic choices. They would be far better served if they could participate in these processes
in an informed way: an informed consumer is an empowered consumer.

The audience that would find this manual useful should be much broader, however. To begin
with, professionals serving the aforementioned role in any area of programming that influences
human welfare could find this manual quite useful, and for the same reasons. It also provides
a solid introduction to impact evaluation methods for anyone with an interest in the subject:
graduate students, technical staff at evaluation projects, journalists looking for a more nuanced
understanding of the steady stream of impact (and, more broadly, causal) studies on which they
are asked to report, analysts at health analytics organizations and so on.

This manual is designed to be “stand alone”. It is a more or less self-contained treatment
of program impact evaluation methods. However, we feel that it is perhaps most powerful when
offered as a text in the context of a class or training workshop designed to introduce program
impact evaluation methods.

It is our hope that this manual opens the door for the reader to a truly powerful set of tools that
allow for us to understand the implications of human welfare programs, in the process providing
crucial information about what works and what does not in shaping health, education, fertility and
a slew of other outcomes that ultimately shape the length and happiness of our lives. Program
design informed by such tools has the power to change our world.



Chapter 1

Introduction

A dizzying array of programs seek to influence health, wealth, education, employment and other
channels of human welfare.1 An accurate understanding of what these programs actually achieve
would allow society to focus scarce resources on those programs that most efficiently and effectively
improve welfare. The aim of program impact evaluation is to learn whether and to what degree a
program altered outcomes from what otherwise might have prevailed.

Measuring what might “otherwise have prevailed” is a challenging task. The phrase suggests
an appeal to history’s unrevealed alternatives. In the abstract, one might consider comparing the
outcome of interest for an individual in circumstances under which they participate in a program
or under which they do not.2 Specifically, we might seek to measure differences in outcomes for an
individual as their program participation, and only their program participation, varies. The use of
the word only is important: if the only thing that varies is their participation in the program, then
that must be the driving force behind differences in outcomes that we might observe when they
participate and when they do not do so.3

Unfortunately, observation of an individual in two sets of circumstances that differ only in terms
of their program participation is not intrinsically possible. Most obviously, an individual cannot be
observed in two states at the same time. Varying individual program participation over time would
violate the requirement that only program exposure varies: time (and hence any other factors
or characteristics subject to evolution with time) would vary as well as program participation,
making it questionable to ascribe wholly changes in outcomes of interest to variation in program
participation alone.

What we have outlined in these paragraphs is what is often referred to as the “fundamental
identification problem” of program impact evaluation. We would like to estimate program impact

1Examples include worker or employment training programs (designed to influence labor market experiences of
participants), childhood development programs (which target physical, emotional or cognitive development), fertility
control programs, health insurance delivery and health service provision programs (intended to influence health care
utilization and, ultimately, health), legal or regulatory innovations to permit or stimulate institutional changes (for
instance, charter school legislation to promote the development of alternative public educational institutions and,
ultimately, to influence the quality of the learning experience provided by public education), alternative policing
schemes (to reduce crime), agricultural extension programs, health care delivery schemes, etc.

2Throughout this manual, we rather freely interchange the terms program “participation” and program “exposure”.
Sometimes we refer to “treatment”. Essentially, these mean the same thing. Instinctively, exposure or treatment
probably imply less active engagement than participation. For instance, it seems more natural to say that one
participates in a job training program but is exposed to a behavioral change communication program. In practice,
however, the difference is mostly semantic and the statistical challenges are generally essentially the same.

3When we refer to variation in program participation, we typically mean the simple difference between participa-
tion and non-participation. However, at various points in this manual we will allude to the slightly different concept
of a dose-response relationship, whereby program participation can vary in its intensity.
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2 CHAPTER 1. INTRODUCTION

by measuring the difference in outcomes for a sample of individuals holding everything but their
program participation constant. Unfortunately, this is not possible: we cannot observe an individ-
ual’s outcomes while varying their participation status in a program and only their participation
status in that program. Within the framework of varying exposure for the same individuals, we are
therefore reduced to at most considering differences in outcomes over time for the same individual
as their program participation varies.

A natural alternative would involve comparing (presumably at the same time) outcomes for dif-
ferent individuals who were participants and non-participants. However, under typical operational
circumstances, program participation is determined in the messy laboratory of the human expe-
rience. It is generally not randomly determined, as would be the ideal under the laboratory and
clinical traditions of experiments or randomized control trials, but instead the product of conscious
decisions that balance the costs and benefits of participation. Since such costs and benefits likely
vary with the characteristics and circumstances of individuals, we would expect different types of in-
dividuals to become participants and non-participants. However, this means that participants and
non-participants would differ by more than just the experience of program participation, making
it difficult to ascribe differences in their outcomes to the impact of the program.

The basic challenge is thus the same under this alternative: between those observed participating
in a program and those who are not, there is always the possibility that more factors differ than just
program participation. We thus cannot be certain whether program participation, and program
participation alone, drove any observed differences in outcomes between participants and non-
participants.

In recent decades various disciplines have offered a range of practical statistical tools or strategies
for dealing with this essential challenge. This manual surveys these methods.

An important consideration in writing this manual has been to strike a balance between abstract
presentation of methodological concepts and concrete application to actual data. A sound grasp of
the conceptual issues is essential. It provides a meaningful framework for understanding the trade-
offs between and limitations of alternative impact evaluation methods. However, the theoretical
literature on the econometrics of program evaluation has been largely inaccessible to many of the
applied researchers and analysts who might most benefit from its insights, since it relies on dense
mathematics, often characterized by idiosyncratic notation and complemented by little intuitive
explanation. In this manual we must rely on mathematics to present key ideas, but try to do so in
the most straightforward, intuitive fashion possible. We always provide narrative discussion of the
mathematics. Moreover, we attempt to apply a single consistent notational approach throughout.

Despite this desire for accessibility, an important and unavoidable complication in writing a
manual such as this is the need for a certain degree of technical background required to understand
impact evaluation methodologies in any sort of comprehensive, nuanced fashion. In short, while
we attempt to make the mathematical statistics of this literature more accessible, doing so requires
insuring that the reader has at their disposal some key tools from ... mathematical statistics.
To do this, we have attempted to create relatively self-contained background briefings on these
tools. The goal of these briefings is to focus on the most essential elements of a given tool from
mathematical statistics for the purpose of providing the reader with the background information
that they absolutely require for the discussion in the manual. These briefings strive to match the
accessibility of the discussion in the main text.

Whenever the required discussion is fairly short these briefings are contained in Tool Boxes in
the text. An example of a Tool Box is provided after this paragraph. These lend themselves best
to tools that require only very short discussion, such as basic definitions or enumeration of a few
properties that do not require further proof.
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Tool Box: Tool Boxes

This is an example of a Tool Box. In these Tool Boxes, brief introductions are provided to
key statistical concepts first invoked in the surrounding pages of the manual.

The purpose of the Tool Boxes and, where necessary, longer and more involved background
explanations in the text is to make the manual as self-contained as possible. By doing this, we
hope to avoid a hassle that we as researchers have frequently faced when reading manuscripts in
the program evaluation literature: the need to constantly put down the manuscript to search for
and read some other piece that more fully describes some concept, tool or technical device in order
that we might fully understand what we are reading. We currently envision that updated versions
of this manual will be periodically released as developments in the ever-changing impact evaluation
literature warrant. We would be grateful for feedback regarding additional Tool Boxes or more
lengthy background discussion that might improve the reader experience.

It is also important to move beyond concepts and provide a concrete sense of the implications
of the abstract statistical phenomenon under discussion. Unfortunately, there is no single real
world sample or data set that will allow us to demonstrate all of the data problems or estimation
techniques discussed in this paper. This limitation illustrates one of the first considerations when
deciding on an impact evaluation method: most come with very specific data requirements which
will dictate to some degree the available options for the impact evaluation problem at hand.

At the same time, the very nature of the data problems that confound straightforward evaluation
of human resource programs makes it difficult to illustrate them clearly with real world data for
demonstration purposes. With real world data we often cannot rule out other inconvenient data
features to focus on the particular data flaw motivating a given impact evaluation estimator: it is
generally impossible to isolate with complete confidence that problem within a particular sample
even if we have a high degree of confidence that it is somehow present.

Perhaps the most important problem with real world samples, however, is that we cannot ever
know the true value of a parameter of interest (such as true program impact) for the population
represented by a real world sample. This is a major consideration, since most of the techniques we
consider in this manual are intended to generate estimates closer to such true population values
than those offered by alternative estimation strategies. To know whether they have done so for
expositional purposes in this manual, we must know what that true value is.

We will thus rely on two approaches to provide empirical illustrations of the various methods.
First, wherever possible and efficient, we discuss the specific applications that applied researchers
have used to explore particular estimators. This provides real world examples that can help to form
a more concrete sense of how to approach the various constraints offered by particular data sets.
These samples were often chosen by them because they met the data requirements of the method
under consideration. By highlighting the features of these samples that made them so useful in
those particular applications, we will shed light onto which data environments are particularly
attractive for alternative impact evaluation methods.

However, we will also rely far more frequently on simulated data based on the idealized cir-
cumstances under which the various estimators are designed to operate. By “idealized” we mean
a specific type of data failure or behavioral process, and a sample with the specific features that
each estimator requires in order to be implemented. The simulations are described carefully in the
text, and the full set of STATA .do files that implement them will be provided. The advantage of
this approach is that, since we generate the sample, we know the true parameters (such as program
impact) behind it.
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When discussing STATA examples, we frequently place the relevant STATA results directly into
the text as a “STATA Output”. An example follows this paragraph. In the title to the example,
the example name is given and, for the reader’s convenience, the accompanying STATA .do file
that produces the output is indicated. The STATA output itself is of a different font from the rest
of the text, but matches that used in STATA itself.

STATA Output 1.1 (1.do)

. summarize

Variable Obs Mean Std. Dev. Min Max

x1 10000 -.0005992 1.000659 -3.918931 3.641588
x2 10000 -.0015025 .9946398 -3.379955 4.167702
x3 10000 -.0071565 1.005172 -3.579602 3.915892
x4 10000 .004938 .9915043 -3.794222 3.700645
x5 10000 .0126444 1.010891 -3.536209 4.038878

x6 10000 .0058783 1.008324 -4.518918 3.598916
x7 10000 .0200271 .9953145 -3.845707 4.448323
x8 10000 .0186147 1.01171 -3.883 3.711688
x9 10000 .00043 1.007457 -4.122494 3.578277
x10 10000 -.0106295 1.000299 -3.659957 3.693912

.

. describe

Contains data
obs: 10,000
vars: 10
size: 400,000

storage display value
variable name type format label variable label

x1 float %9.0g
x2 float %9.0g
x3 float %9.0g
x4 float %9.0g
x5 float %9.0g
x6 float %9.0g
x7 float %9.0g
x8 float %9.0g
x9 float %9.0g
x10 float %9.0g

Sorted by:
Note: dataset has changed since last saved

As a final stylistic note, we confess to a certain degree of repetitiveness in this manual. We
sometimes introduce and explain a concept repeatedly, albeit typically in slightly different contexts.
While this might strike some readers as a touch tedious, we followed this course for two reasons.
First, these are often important, foundational concepts. Thorough understanding of them, and how
they manifest themselves in different settings, is crucial. Second, in our own intellectual lives, we
have sometimes met with frustration reading complicated technical manuscripts on the occasions
where a key concept, one that would repeatedly prove central to many of the discussions within
the work, did not register clearly on its brief, isolated introduction.



Chapter 2

The Program Impact Evaluation
Challenge

In this chapter, we introduce basic operational concepts in program impact evaluation. A thorough
understanding of them is important since they provide the logical framework within which to
understand and assess the various program impact estimators discussed in this manual. Though
the concepts in this chapter may seem basic, many a program impact evaluation has foundered when
the basic questions that these concepts speak to were not adequately addressed in the evaluation
design: even the most sophisticated impact evaluation estimation methodology generally cannot
compensate for an evaluation design that is not coherent in terms of the relatively basic respects
discussed in this chapter.

2.1 Basic Concepts

An important step toward performing a program impact evaluation is to characterize the parameter
one wishes to capture in order to decide what, if any, impact a program may have had. The definition
of that parameter depends on what one wants to learn about the program. Typically, one wishes
to know either the program’s impact on a behavior the program seeks to influence or an ultimate
human welfare outcome that it strives to shape.

At this stage, it is necessary to introduce some notation. Let Y represent an outcome of interest.1

It is the behavior or outcome that we anticipate might be influenced by exposure to a program.
It could be employment status, wages, income, health, health care utilization, performance on
standardized tests, use of modern family planning, fertility, criminal behavior, farm output, or any
of the myriad intermediate or ultimate human welfare outcomes that might be of interest.

Now suppose that we wish to consider the impact of some program on Y. Let Y 0 represent an
individual’s outcome if they do not participate in the program and Y 1 represent their outcome if
they do participate in the program. In the simplest terms, for a given person, Y 0 is what happens
when he or she doesn’t participate in the program and Y 1 is what happens when he or she does
participate in the program. The impact of a program on an individual is then the difference between
what would have happened if they participated minus what would have happened if they did not
participate, or Y 1 − Y 0.

Conceptually, we are supposing that each individual has two potential outcomes, one if they
participate in the program and one if they do not do so. For example, in contemporary lower

1Here we abstract away from the terminology of program frameworks, which speak to concepts like outputs,
outcomes, etc. Y is simply something the program may influence, and it is of interest what that influence is.

5



6 CHAPTER 2. THE PROGRAM IMPACT EVALUATION CHALLENGE

income societies policymakers employ a wide range of fertility control programs and it is common
for household surveys to collect information regarding a woman’s exposure to or participation in
various fertility programs as well as, for instance, her use of family planning methods. At any
given point in time, we observe her family planning behavior under only one program participation
regime. We cannot observe her use of family planning while exposed to a program as well as in
the absence of such exposure because at any given point in time she either is or is not exposed to
the program. However, the woman would have experienced some level of fertility or utilization of
family planning services either way. We can observe only one of her possible experiences.

The inability to observe both Y 0 and Y 1 for the same person at a point in time means that we
cannot directly observe that person’s program impact, Y 1 − Y 0. This is a fundamental obstacle
in determining the impact of a program for each individual. Indeed, it is often referred to as the
fundamental identification problem of program impact evaluation.

Let P be an indicator variable that equals 1 if an individual is exposed to or participates in a
program and 0 otherwise. This is observed program participation. It tells us whether the person
actually participated in the program or not. For instance, continuing the earlier example, at a
given point in time we may observe some women to be exposed to or participating in a fertility
control program (P =1) while others are not (P=0 ).

For each individual we can define their observed outcome Y as

Y = (1− P ) ∗ Y 0 + P ∗ Y 1

This simply says that the outcome we actually observe for each person depends on whether they
actually participated in the program. If they did participate, we observe their outcome as a par-
ticipant in the program (Y 1). If not, we observe their outcome in the absence of participation
(Y 0).

This potential outcomes framework provides at the individual level our first analytical basis for
approaching a basic concept in program impact evaluation: the counterfactual. In general, for
the purpose of understanding the effect of any circumstance on an outcome, the counterfactual is
what would have occurred in the absence of that circumstance. In the present context, we have
defined potential outcomes Y 1 and Y 0 that tell us the outcome of interest that an individual would
have experienced if, respectively, they participated in the program (P = 1) and if they did not do
so (P = 0). Y 0 is the counterfactual to Y 1: it is the outcome that would have happened without
program participation.

The goal of program impact evaluation is to answer the following question: did a program
make a difference? It seems obvious that to do so we require at the very least information about
outcomes for program participants. However, without some alternative against which to judge
their outcomes, how are we to assess whether it made a difference? How can we know whether the
outcomes that we observe among participants reflect changes brought on by the program or whether
they would have occurred anyway? To answer these questions, we must observe the alternative
state of the world, or the counterfactual.

Whenever one is designing an impact evaluation, it is quite useful to put serious thought into the
meaningful counterfactual to whatever one wishes to assess in that particular application. Difficulty
in defining the counterfactual should be taken as a sign that perhaps one has not yet developed a
sufficiently focused sense of what it is that one wishes to assess: it is difficult to understand how
an impact evaluation can provide much useful information if it does not begin with a well posed
counterfactual question.

We now begin to consider some of the various types of program impact that might be of interest.
Following conventional terminology, we liken exposure to a program to “treatment”. First, we have
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the average treatment effect

E
(
Y 1 − Y 0

)
where E(·) is the expectations operator (see the Tool Box on the Expectations Operator). The
average treatment effect is the average impact of the program across all of the individuals in the
population of interest. It is defined, quite sensibly, as the average across the population of the
program impact of each individual in that population.

Tool Box: The Expectations Operator

The expectations “operator” E(·) provides the expectation of a random variable. Suppose,
for instance, that X is a discrete variable that takes on three values (x1, x2 and x3) with a
probability of each occurring. Its expected value is then

E (X) = x1 · Pr (X = x1) + x2 · Pr (X = x2) + x3 · Pr (X = x3)

where Pr(X = xq) is the probability that X takes on the value xq. Notice that this is of
the basic form

E (X) =
Q∑
q=1

xq · f (xq)

where
∑Q
q indicates summation over the various values that X takes on (x1, x2, ..., xQ) and

f(xq) is the probability of outcome xq (i.e. Pr(X = xq) = f(xq)). If X was continuous, the
analog to such summation is integration. For a continuous random variable with probability
density function f(x), the expectation is thus

E (X) =

∫ ∞
−∞

x · f(x)dx

Thus, the expectation is basically the weighted average of a random variable, where the
weights are the probabilities of the various values that that variable can assume.
Finally, expectations can depend on another variable through the conditional expectations
operator E(·|·). For instance, E(Y |X) is the expectation of Y conditional on X (e.g. ex-
pected income Y given education X). The conditioning can be on more than one variable
(e.g. E(Y |X,Z), which, to fix ideas, could be the expectation of income Y conditional on
education X and age Z and based on various restrictions on the conditioning variable (e.g.
E(Y |X > c) provides the expectation of Y conditional on X being greater than c, as in for
instance, the expectation of income given that education is greater than 12 years).

Another common parameter of interest is the average effect of treatment on the treated:

E
(
Y 1 − Y 0|P = 1

)
This is the impact of the program on those actually exposed to the program.

At first glance, it might seem to some that these two treatment parameters are effectively
describing the same thing. Alternatively, others might wonder why the latter effect would be of
interest. After all, don’t we care primarily about how a program effects the average or typical
person? However, the two are not necessarily the same and the latter may be more interesting in
many instances. At the most basic level, the average treatment effect applies across the popula-
tion, while the average effect of treatment on the treated captures impact for those who actually
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participated in a program. As long as there are some non-participants and participation is not
randomly determined, participants and nonparticipants are likely not populations identical in their
characteristics.

Further, it is often not clear why the impact for the entire population would be a more useful
parameter than that for those who experience an intervention. For example, a job training program
focusing on basic work skills is likely to have little effect on the labor market outcomes of highly
educated or skilled professionals with a great deal of work experience, who are unlikely to enroll in
it in any case. On the other hand, its impact on those with lower skill levels and less labor market
experience, who are other things being equal more likely to enroll in it than the aforementioned
group, might be dramatic. In this case, the impact of the program on those who actually enroll
might differ substantially from the impact on the average individual and is likely of greater interest.

Consider an income supplementation program designed to enhance the nutritional status of
children. Eligibility for such programs often depends on some sort of means test (the program
would most likely be targeted at the poor). It seems straightforward that, first, the impact of the
program on the average child is likely to fall short of that for the children of poor families eligible for
the program (because the latter is likely to be more nutritionally vulnerable, allowing greater scope
for the program to have a discernible impact) and, second, that the impact among participants
(who are drawn from the targeted group) is of greater interest for the purposes of policymaking
than the impact on the randomly drawn child.2

Moreover, individuals often base their program enrollment decision on the anticipated gain that
they will experience if they are exposed to the program. It is therefore entirely likely that in a
setting of rational decision making those enrolled would be the type of individuals who anticipate
larger gains from the program. The average program effect, taken as it is with respect to the
randomly drawn person in society, might severely underestimate the gains experienced by actual
participants.

2.2 The Estimation Challenge: Basic Ideas

In the program impact evaluation literature, it is not uncommon to see exposure to a program
referred to as “treatment”. The word treatment, with its connotation of a clinical intervention,
suggests a convenient intellectual framework for examining the challenge of estimating the impact
of programs with non-experimental data drawn from the messy laboratory of the human experience:
evaluations of medical interventions often rely on data drawn from a setting that resembles the ex-
perimental ideal of randomization between treatment and control subjects. Randomized biomedical
trials provide a simple platform for thinking about an ideal empirical circumstance for conducting
impact evaluations, as well as consequences of the failures of randomization that frustrate simple
impact evaluations.

When, for instance, the effect of a drug on the longevity of rats is evaluated in a laboratory
setting, standard practice dictates establishing an experimental/treatment group of rats (which
receives the drug) and a control group (which doesn’t). Assignment of rats between the two groups
is typically completely random.

Randomization insures that the rats are alike on average, so that idiosyncratic baseline dif-
ferences between particular rats are statistically canceled out when comparing average outcomes
between the two groups. Their statistical “sameness” is then reinforced by attempts to insure that
their experiences in the course of the experiment vary only in terms of exposure to the drug. There

2Wooldridge (2001) also discusses the policy relevance of the two concepts. Heckman (1997) actually focuses on
an example much along the lines of the job training example provided in the text.
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are thus no differences between the groups in terms of food levels, veterinary attention, etc. during
the experiment. To assess the average impact of the drug on longevity, it is then necessary only to
compare mean (i.e. average) longevity in the control and treatment samples.

In this example, it is essential not only to have a sample of rats exposed to the program, but
also a sample not exposed to it. The latter allows us to have some alternative state of the world
against which to judge outcomes among those who received the drug. The “no drug” group provides
information about the counterfactual.

We can think of this experimental setup in the terms introduced earlier. For every rat, there are
two potential outcomes: its longevity with exposure to the drug (Y 1) and without exposure (Y 0).
In the randomized setting, we still observe only one of the two outcomes for each rat (because, for a
given experimental interval, rats either receive the drug or they don’t). Nonetheless, randomization
opens the door to powerful empirical possibilities: because of it we can be sure that the two groups
of rats are alike on average. It is thus not necessary to observe both potential outcomes for each
rat for the purpose of estimating the average treatment effect.3

Put a bit differently, because of randomization Y 0 and Y 1 are not related to actual treatment
status: on average Y 0 and Y 1 are no different for the rats assigned to the treatment and control
groups. Because of randomization, there are no differences between rats assigned to the two groups,
and hence we would expect that there would be no average differences in the distribution of outcomes
Y 0 and Y 1 between them.

Statistically, randomization insures that Y 0 and Y 1 are independent of actual assignment to
the treatment or control groups, P . Another way of thinking about this is that assignment to the
treatment or control group (i.e. the value of P ) reveals no information about a rat’s value of Y 0 or
Y 1. We do not expect the rats in either group to be, on average, bigger, stronger, younger, smarter
or fatter than those in the other group. Thus, we do not expect their outcomes on average in the
face of treatment or the absence of it to be any different.

A related, but somewhat weaker condition is mean independence: E(Y 0|P ) = E(Y 0) and
E(Y 1|P ) = E(Y 1). This means that the expected values of Y 0 and Y 1 should be the same whether
the rat was observed to receive treatment or not. Independence always implies mean independence.4

Let’s think about this in terms of attempting to estimate, for instance, the effect of treatment
on the treated:

E(Y 1 − Y 0|P = 1)

By the properties of the expectations operator (see the Tool Box on Properties of the Expectations
Operator)

E(Y 1 − Y 0|P = 1) = E(Y 1|P = 1)− E(Y 0|P = 1)

The challenge from the standpoint of recovering the impact of the program on the treated is to
somehow estimate E(Y 1|P = 1) and E(Y 0|P = 1).

E(Y 1|P = 1) can be estimated simply by averaging outcomes for the rats exposed to treatment
(we are, after all, interested in the impact of treatment on the treated). But how does one recover
the expected outcome for those actually receiving treatment had they not received it? Because

3There is actually one other condition that must be met: their experiences in the course of the treatment must
differ only in terms of their exposure to the drug.

4It might seem intuitive that the opposite is also true (i.e. that mean independence implies independence).
However, it is not. The distribution of Y 0 and Y 1 is about more than just the means of Y 0 and Y 1. For example,
the distribution of Y 0 and Y 1 also involves measures of dispersion, such as variance. Mean independence simply
guarantees that on average the values of Y 0 and Y 1 will be the same across treatment and control groups. It does
not rule out other possibilities, such as the variance of Y 0 and Y 1 differing between treatment and control groups.
Independence rules out any kind of statistical relationship between {Y 0, Y 1} and P . Hence, it is the stronger
condition.
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of randomization, we know that Y 0 and Y 1 are independent of actual assignment to treatment
(P ). Thus, E(Y 0|P = 1) = E(Y 0) and E(Y 0|P = 0) = E(Y 0) and, therefore, E(Y 0|P = 1) =
E(Y 0|P = 0): we can use the average outcomes for rats that did not receive treatment as an
estimate of the outcomes that those that did receive treatment would have experienced had they
not received treatment (that is, the counterfactual). One important thing to note about this math
is that although we established the independence of Y 0 and P at the outset, in practice we relied
on the weaker condition of mean independence.

Tool Box: Properties of the Expectations Operator

The expectations operator has some important properties. First, if c is some constant (i.e.
not a random variable, but a fixed number) then

E (c) = c

This leads to the next property, namely that

E (c ·X) = c · E (X)

Finally, we have the additive property:

E (c1 ·X1 + c2 ·X2) = c1 · E (X1) + c2 · E (X2)

where the cs are constants. If c1 = c2 = 1, this reduces to

E (X1 +X2) = E (X1) + E (X2)

There are, however, limits to this flexibility. First,

E (X1 ·X2) 6= E (X1) · E (X2)

unless X1 and X2 are independent. Furthermore,

E

(
X1

X2

)
6= E (X1)

E (X2)

and
E [f (X)] 6= f (E [X])

A clear exception to the last inequality would be the case where f(·) is linear (e.g. f(X) =
a+ b ·X, where a and b are constants).

Let us now tweak this experimental design in a fashion that undermines randomization between
the two groups. Suppose that instead of randomly assigning rats to the treatment and control
groups, assignment is determined by a competition. For example, the researchers might place all
of the rats in one of two adjacent boxes. The other box is partially filled with cheese. Researchers
then allow rats to climb from one box to the other until they have achieved the desired numerical
division of the available supply of rats between treatment and control groups.

It should be clear that the two groups of rats are no longer the same in terms of their average
baseline characteristics. The rats that landed in the cheese box were probably quicker to the chase
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because they smelled the cheese first and were better climbers. In short, they were keener, stronger
and, most likely, younger. We now cannot be sure whether any differences between the two groups
in terms of longevity are due to exposure to the drug or differences in the baseline characteristics
as a result of sorting between the treatment and control groups.

In essence, treatment status P is serving two roles from an empirical standpoint: to signal the
biomedical impact of the drug on longevity and to proxy for the differences in baseline characteristics
between the two groups of rats. The empirical value of drug exposure as a signal of the drug’s impact
has been compromised by self-selection of the rats into the two groups.

Let us consider this in the terms presented above, supposing again that the goal is to estimate
the average impact of treatment on the treated. Without loss of generality and for concreteness,
assume that the rats in the box with cheese are the treatment group (the essential logic holds even
if the reverse is true).

The goal is to provide estimates of E(Y 1|P = 1) and E(Y 0|P = 1). Once again, E(Y 1|P = 1)
can be estimated by averaging outcomes (longevity) among those receiving treatment. However,
recovering an estimate of E(Y 0|P = 1) is no longer straightforward. Since assignment to the
treatment group is now non-random, we can no longer be sure that E(Y 0|P = 1) = E(Y 0) or, by
extension, that E(Y 0|P = 1) = E(Y 0|P = 0): outcomes are no longer independent, or even mean
independent, of treatment.

In particular, we suspect that the rats in the treatment box are younger and stronger. These
rats likely would have experienced greater longevity than those in the control group even without
the drug. Mathematically, in this example E(Y 0|P = 1) > E(Y 0|P = 0): the stronger, younger
treatment rats would have lived longer even without treatment. This means, however, that the
average outcomes for the control group can no longer serve as a valid estimate of the outcomes
for the treatment group in the absence of treatment. Thus, we see the power of randomization by
the consequences of its absence: one small complication has completely undermined our ability to
assess the effect of treatment on the treated by straightforward means.

Although in this example the specific problem was E(Y 0|P = 1) > E(Y 0|P = 0), in general
the problem is simply that E(Y 0|P = 1) 6= E(Y 0|P = 0). We had originally sought to estimate the
average effect or impact of treatment on the treated

E
(
Y 1|P = 1

)
− E

(
Y 0|P = 1

)
by taking the difference of two things we could observe (or at least estimate):

E
(
Y 1|P = 1

)
− E

(
Y 0|P = 0

)
The problem is that now rats have selected themselves into boxes and, as a result,

E
(
Y 0|P = 1

)
6= E

(
Y 0|P = 0

)
and thus {

E
(
Y 1|P = 1

)
− E

(
Y 0|P = 1

)}
6=
{
E
(
Y 1|P = 1

)
− E

(
Y 0|P = 0

)}
The difference{

E
(
Y 1|P = 1

)
− E

(
Y 0|P = 1

)}
−
{
E
(
Y 1|P = 1

)
− E

(
Y 0|P = 0

)}
= E

(
Y 0|P = 0

)
− E

(
Y 0|P = 1

)
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is called self-selection bias (or, in many works, just selection bias) because it is the bias
generated by the self-selection of rats into boxes (in other words, by the breakdown of random
assignment to the boxes).

This represents a huge statistical setback. Straightforward methods, such as simple comparison
of estimated mean outcomes between participant and non-participant groups, are no longer effective
for recovering program impact. Program effects can now be recovered only with more elaborate es-
timators, each of which carries a huge price tag in terms of the credibility of the inferences that can
be made with them: additional assumptions. As the paper proceeds, the reader will gain a clearer
understanding of exactly what is meant by this, but for present purposes it is important to un-
derstand that randomization had permitted the recovery of program effects with simple estimators
with comparatively few strings (in the form of potentially unpalatable assumptions) attached.5

However, the problems in terms of straightforward evaluation of the drug’s impact on longevity
actually extend beyond these differences in baseline characteristics. One group of rats ended up
in a box filled with cheese. All other things being equal, they were thus exposed to an additional
sort of treatment: more cheese. And, for a variety of reasons, we might expect that exposure to
cheese could influence longevity. The extra cheese will render them better fed, but also possibly
overweight. Thus, in terms of the circumstances to which they were exposed, the two groups really
differ along two lines that might influence longevity, rather than one.

To see this point more clearly, let us abstract away from the problem of self-selection and
suppose instead that one box had been filled with cheese but that the researchers still randomly
assigned the rats between the two boxes (rather than let them sort themselves). Then, the rats
would be the same on average in terms of baseline characteristics, but their longevity would still
differ simply because some had extra cheese by dint of what was in their box. Once again, exposure
to the drug is serving two roles empirically: to signal the biomedical impact of the drug on longevity
and to proxy for exposure (or non-exposure, as the case may be) to extra cheese. We refer to this
as the problem of confounding treatment: a situation where assignment to the treatment under
consideration is possibly related in some way to assignment to another treatment that also impacts
the outcome of interest.

Turning once again to the challenge of estimating the impact of treatment on the treated
and supposing again that the rats in the cheese box form the experimental/treatment group, we
could once again estimate E(Y 1|P = 1) by averaging longevity across those rats in the treatment
group. However, because of the additional cheese, we have a problem: E(Y 1|P = 1) now reflects
the impact both of the drug treatment (which we hope to pick up) and of the cheese (which we
don’t). We thus can’t use the outcomes for the rats actually exposed to the treatment to estimate
the average outcome under treatment: because of the exposure to the cheese their experiences no
longer statistically reflect just treatment. Note, however, that, because rats were randomized across
groups and because under this scenario the rats not receiving treatment received no cheese in their
box at the outset, we can still use E(Y 0|P = 0) to estimate what the treatment group would have
experienced in the absence of treatment.

One might wonder whether we could return to the salad days of simple estimation with ran-
domized assignment to treatment simply by giving the rats in the control group the same amount
of cheese. The answer depends on how one plans to interpret the results, highlighting a concern in
some sense intrinsic to all impact evaluations. Since the impact of the drug may in some respect
interact with cheese, it might be risky to generalize one’s results after giving the control rats a
compensating dose of cheese.

5This is not to say that randomized control trials do not involve complications in the real world, as we will see in
the next chapter.
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Cheese may dampen or amplify the drug’s effect on longevity. For instance, it could be that
cheese and the drug have little impact on longevity when administered separately, but together
that may have a big impact. It thus might be inappropriate to generalize the evaluation results to
more general circumstances where rats might not receive cheese with treatment.

This in some sense was an implicit problem even before the example of extra cheese was in-
troduced: how certain could we as researchers be that the baseline circumstances and experiences
in the course of the trial of either group of rats reflected the more typical circumstances under
which the drug, if used more widely, might be expected to operate? More generally, program im-
pact evaluations often rely on samples drawn from a distinct setting (institutional, programmatic,
cultural, religious, economic, political, etc.). Thus, one must exercise great care when attempting
to use results from that sample for the purposes of predicting program impacts in a very different
setting. In this sense it is useful to make a distinction between internal validity and external
validity. Estimates are internally valid if they correctly recover program impact within the sample
at hand. They are externally valid if they provide a meaningful indication of the impact of the
program under circumstances other than those from which the sample at hand emerged.

Before moving on, it might be useful to consider a graphical representation of the three situations
that we have just discussed. As a preliminary to this, we offer a definition of the word causal, which
will be bandied about in the discussion to follow. When we refer to a causal relationship between
two variables, we mean a cause and effect relationship: variation in one of these variables causes
variation in the other.6 Figure 2.1 illustrates our graphical approach to modelling this: the solid
arrow means that Z causes W (meaning, more precisely, that variation in Z causes variation in W ).
This is as opposed to mere correlation (represented by the dotted line in Figure 2.4), a situation
where two variables are statistically correlated but variation in either of them does not actually
cause variation in the other. It could be, for instance, that the correlation between the two is an
artifact of the influence of a third variable, variation in which does cause them to vary.

Figure 2.1: Z “causes” W

Let us begin with straightforward randomization, illustrated in figure 2.2. P and Y are defined
in the same fashion: program exposure (in this case whether or not the rats received the drug) and
the outcome of interest (their longevity), respectively. X are characteristics of the rats (such as
their age, weight, etc.). Solid arrows indicate causal relationships. The figure shows that X and P
both act to influence Y . Notice that there is no interrelationship between X and P : they are two
separate boxes, and the only thing they have in common is that they both operate (independently)
to affect Y . The lack of a relationship between X and P is a result of the randomization design,
which insures that the two are independent. This allows us to consider the two pathways separately:
we do not need to worry about the variation in characteristics X across rats when evaluating the
effect of the program exposure P on outcome Y . The reason is that the variation in P has nothing
to do with the variation in X, and hence the variation in Y from the two different sources can be
assessed separately.

6We will explore alternative notions of causality later in this chapter.
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Figure 2.3 illustrates self-selection. The individual characteristics of the rats X now cause
exposure to the program P . From a purely statistical standpoint, we can no longer consider the
effect of P on Y in isolation. Because of self-selection, certain types of rats (defined by different
values of X) are more likely to be exposed to the program. For instance, if X is simply a measure
of strength, stronger rats are more likely to be exposed to the drug and less strong rats are less
likely to be exposed to the drug because stronger rats were more likely to reach first the cheese
box that defines the treatment group. Thus, the average value of X will be different when P = 0
and P = 1. The point is that variation in P now goes hand in hand, statistically, with variation in
X. If we consider the link between P and Y in isolation, it now serves to capture the link between
P and Y and between X and Y (because the value of X now systematically varies according to
the value of P ). Exposure to the drug captures the effect we are interested in, that of the drug on
longevity, but also serves as a proxy for X.

Figure 2.2: Randomization

Figure 2.3: Self-selection
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In our discussion of self-selection, we ignored the problem of confounding treatment created by
the imbalance of cheese between the treatment and control groups. We now turn to that problem
in Figure 2.4. The dashed line indicates a statistical relationship that is not causal in the strict
behavioral sense: the fact that two variables are related does not mean that variation in one caused
variation in the other.

Recall that we assumed for the purposes of discussing confounding treatment that rats were
still randomly sorted between treatment and control groups, but that the treatment group received
extra cheese along with the drug. In the figure, the extra cheese is represented by C. Both P and
C are now once again independent of X because we re-established randomization of rats between
the two groups. The difficulty in this case lies with the fact that the rats in the treatment group
effectively received two treatments: the drug and the cheese. In general, we can only recover their
combined effect by comparing the average values of Y when P = 0 and when P = 1. The effect
that we recover by doing so reflects exposure not only to the drug (P ) but also the cheese (C).

Figure 2.4: Confounding Treatment

These examples allow us easily to conceptualize, from the standpoint of the ideal random
experiment, the two most common empirical challenges when evaluating social programs with non-
experimental data drawn from the world at large. Participants often self-select (or are selected)
into the program in a non-random fashion, and participation in the program may be associated
with a series of other changes that might disguise the true impact of the program.

While we have focused to this point on rats in laboratories, the available data for evaluating
human welfare outcomes, which usually provides information about program assignment and out-
comes in the real world (which is, of course, not an experimental laboratory setting), is essentially
contaminated by the same failures of randomization, preventing researchers from drawing conclu-
sions about the impact of programs in a straightforward fashion (for instance, by simply comparing
mean outcomes for treated and untreated individuals).

Consider, for example, job training programs. Researchers often want to identify the impact of
these programs on income or wages. In practice, the information (that is, data) used to evaluate
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the impact of the program on wages is gathered by observing the wages of a group of people who
actually participated in the program and then comparing them with those of a group that did not.
However, those who participated in job training programs often differ from those who did not by
more than just exposure to the program. First, there are differences in baseline characteristics
between participants and non-participants due to self-selection. For instance, it may be that,
other things being equal, more motivated individuals enroll in job training programs. Moreover,
these programs also often have qualification criteria that could in and of themselves be important
in terms of future wages. Second, whether it is by the explicit desire of policymakers to link job
training to other interventions or the fact that the qualification mechanisms just described are often
similar for other programs as well, those enrolled in job training programs are often participating
in other programs that might influence future wages through a variety of pathways. Alternatively,
non-participants may in some cases be non-participants because they decided instead to enroll in
some other, similar program. It could thus be impossible to evaluate the impact of the program on
wages simply by comparing the wages of participants and non-participants: their wage differences
might be capturing the impact of the program, other programs, or baseline differences in individual
characteristics. Evaluation based on the simple difference in wages between participants and non-
participants assumes that there are no important self-selection mechanisms or other confounding
programs.

2.3 The Estimation Challenges: Some Common Estimators

Having described some basic program impact identification challenges in very general terms, we now
focus on selection, which is the main concern in this manual.7 We also become a bit more technical
and begin to describe the estimation challenge in terms of the failure of two basic estimators: simple
comparison of mean (or average) outcomes across control and treatment groups, and regression
analysis designed to control for observed differences in observed characteristics across those exposed
and not-exposed to a program.

2.3.1 Simple Comparison of Mean Outcomes Y Between Participants and Non-
Participants

Let us consider estimation of program impact via comparison of mean outcomes between partic-
ipants and non-participants. For concreteness, we focus on estimation of the average effect of
treatment on the treated (similar conclusions can be reached for estimating the average treatment
effect). Our discussion follows the reasoning of Heckman and his colleagues (Heckman et al. (1996),
Heckman et al. (1997a, b), Smith and Todd (2001)).

Conditioning on observed characteristics ~X (age, sex, education, etc.), the average effect of
treatment on the treated is given by

∆X = E(Y 1| ~X, P = 1)− E(Y 0| ~X, P = 1)

This setup allows the average effect of treatment on the treated to vary according to an individual’s
characteristics ~X (see the Tool Box on Vectors).

7We consider issues such as external validity mainly as a background interpretive issue for the purpose of under-
standing the implications of program impact estimates.
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Tool Box: Vectors

Throughout this manual, we will sometimes present what appears to be a variable with an
arrow running over it, as in ~X. Such notation refers not to one variable, but to a set of
them. ~x refers to a set of k variables:

~x = [x1, x2, ...xk]

For instance, if k = 3, it could be that the three variables are age (captured in x1), education
(captured in x2) and income (captured in x3).

Estimation of E(Y 1|P = 1), the expected outcome under participation across all participants,
is fairly straightforward. For instance, one could take the average of Y 1 among those who actu-
ally participated in the program (i.e. P = 1) because it would be observed for them. Estimating
E(Y 1| ~X, P = 1) would involve stratifying along the lines of the various values of ~X (i.e. stratifying
the averaging of Y 1 by the various types of individuals found among participants), a trivial exten-
sion. We could thus, for instance, easily form estimates of E(Y 1|P = 1) for the rich and the poor
as long as we observe income as a part of ~X: we would simply average Y 1 among rich and poor
participants separately.

The challenge lies with forming an estimate of E(Y 0|P = 1). We do not observe what partici-
pants would have experienced in the absence of participation. Therefore, we must form an estimate
of E(Y 0|P = 1) by less direct means than were applied in the case of estimation of E(Y 1|P = 1).

One possibility would be simply to use the outcomes that non-participants experienced as an
indication of what participants would have experienced in the absence of exposure to the program.
In this context, Heckman and his colleagues define selection bias conditional on characteristics ~X
as

S( ~X) = E(Y 0| ~X, P = 1)− E(Y 0| ~X, P = 0)

In other words, selection bias is the difference between the outcomes participants with characteris-
tics ~X experience in the absence of program participation and the outcomes non-participants with
characteristics ~X experience in the absence of program participation.

Such selection bias reflects differences between participants and non-participants beyond just
differences in their observed characteristics ~X. For instance, some unobserved types (the more
motivated, those with lower baseline unobserved health endowments, etc.) might appear more
often among participants than non-participants. We focus on unobserved characteristics because
the selection term S( ~X) already involves explicit conditioning on observables ~X. Thus, any selection
bias must be driven by factors beyond ~X, namely unobserved characteristics of participants and
non-participants.

Notice that the term

S( ~X) = E(Y 0| ~X, P = 1)− E(Y 0| ~X, P = 0)

is defined only for values of ~X occurring in both the participant and non-participant groups. How-
ever, the various values of ~X are defining observed “types” of participants and non-participants.
For concreteness, if ~X includes just age and income, older poor people might represent one type.
Thus, we could more intuitively say that S( ~X) is defined only for types of individuals found in both
the participant and non-participant groups. For instance if no older rich people participate in the
program we cannot determine the selection bias for them. As you will see in a later discussion of
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matching and propensity score estimation, this is sometimes referred to as a “failure of common
support”.8

One can isolate the selection bias not conditional on ~X (technically, we can “integrate out” ~X
from S( ~X)), resulting in an expression of sample selection bias that does not depend on observed
characteristics:

S = E(Y 0|P = 1)− E(Y 0|P = 0)

Think of this as overall selection bias across all types ~X. Heckman and his colleagues show that S
can be parsed into three terms which we (and generally they) refer to as S1, S2, and S3:

S = S1 + S2 + S3

There are thus three distinct factors driving selection bias.
The first term S1 arises due to values of observed types of individuals in ~X that occur only

among participants or non-participants, but not both. For instance, it could be that there were no
high income people among participants (where we assume that we can observe income). Thus, one
reason that selection bias can arise is that there are certain observed types of individuals occurring,
for example, among participants for whom we can find no counterpart among non-participants.
This is the aforementioned “failure of common support”.

The second term S2 reflects the possibility that some observed (i.e. characteristics captured
in ~X) types of individuals are found more frequently in one group than the other. Suppose, for
instance, that we wish to evaluate the impact of a health program. Suppose as well that income level
affects the health outcome the program targets and that the likelihood of program participation
decreases with income. There would likely be more poor individuals in the participant group. The
greater concentration of poor people among participants is one reason that the mean of Y 0 might
differ between the two groups.

Finally, S3 captures the possibility that there could be differences between the two groups in
terms of their unobserved characteristics (i.e. characteristics not captured in ~X). There might
be some unobserved types that occur only among participants or non-participants and there may
be some types that occur more often in one group than in the other. For example, if those with
poorer initial health (many channels of which cannot be observed) are more likely to participate in
a program, the mean of Y0 might differ between the two groups because there are more sick people
among participants.

To summarize, selection bias

S = E(Y 0|P = 1)− E(Y 0|P = 0)

can arise for three reasons:

1. There might be individuals with some observed characteristics who appear only among par-
ticipants or non-participants;

2. There might be individuals with some observed characteristics who appear more often among
participants or non-participants;

3. Either possibility can occur with unobserved characteristics.

8The term “failure of common support” offers a good opportunity for a lesson in the semantics of statistics. The
“support” for a random variable are those values that have non-zero probability of occurring (i.e. there is some
probability that they will occur). The issue with the failure of common support is the possibility of values for x that
occur only when P = 0 or P = 1, but not both. Hence, there are values of x with non-zero probability when P = 0
or P = 1, but not both. In other words, the support for x is not completely common between the two values of P .
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This is a simple but extremely useful framework for thinking about selection bias.
There are many important and interesting insights to be gained from this. For one thing,

we have been able to understand conceptually the kinds of imbalances in covariates, observed and
unobserved, that can contribute to baseline differences in average outcomes across groups. However,
we have also learned a crucial lesson: in principle, we cannot necessarily be confident that we remove
bias associated with differences between participants and non-participants simply by controlling for
their observed characteristics. This is a point to which we will return in later chapters.

2.3.2 Regression

We now turn our attention to considering the challenge of estimating program impact through
regression analysis. Let us begin, however, by considering the relatively easy case of selection on
observables, under which program participation is guided exclusively by observed characteristics of
the individual. For simplicity, assume that there is just one observed characteristic captured in the
variable X.

If X plays a role in program participation (for instance, X might be income and it could be
that poorer people are more likely to enroll in a program), then there is a statistical association
between X and program participation status P . Intuitively, if different types in terms of X are
more likely to participate in a program, then those types of individuals will be more common among
participants than non-participants. For instance, if poor individuals are more likely to enroll in
a program, then program participants will be more likely to be poor and program participation
status P will be associated with income level.

This can be expressed mathematically in several ways. For one thing, there is now a correlation
between P and X:

corr(X,P ) 6= 0

Another way of looking at this is to note that it is now possible that the mean of X is no longer
the same for the two groups:

E(X|P = 1) 6= E(X|P = 0)

For instance, expected income might differ between participants and non-participants.
We focus on the possibility that some types as defined by X might occur more often when P = 0

than P = 1. Thus we are more concerned with the second type of selection bias (S2) from the
preceding subsection. We are not in this subsection explicitly considering the first type of selection
bias (S1), wherein there are values of X that occur only when P = 0 or P = 1, but not both (i.e. the
“failure of common support”). A statistical association between X and P might create problems if
one plans to evaluate program impact simply by comparing E(Y |P = 1) and E(Y |P = 0) (perhaps
by comparing sample mean outcomes for Y between participants and non-participants).

Consider the example of a health program (the outcome Y would thus be some channel of
health). Suppose as well for simplicity that the one observed individual characteristic, X, is age. If
age influences program participation, then program participants and non-participants should have
different average ages. To fix ideas, suppose that older persons are more likely to participate.

This alone would not necessarily undermine impact evaluation by simple comparison of expected
outcomes (presumably estimated as simple means for Y ) between participants and non-participants

E (Y |P = 1)− E (Y |P = 0)

as an estimator of program impact: though the participant population would be older on average,
that would not necessarily provide a source of difference between E(Y |P = 1) and E(Y |P = 0)
outside of that driven by program participation P itself. This is important because it is our hope
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in using this estimator that the differences between the two reflect the experience of program
participation, and only that. If, however, age also influences Y , this simple estimator would no
longer provide an unbiased estimate of program impact since any differences between E(Y |P = 1)
and E(Y |P = 0) might reflect either program participation P , age X or both.

If one could control for the relationship between X and P even as they evaluated that between
Y and P , they might be able to recover the causal relationship of interest (i.e. how variation
in P causes variation in Y ). Regression analysis allows us to control for relationships among
the observed variables X and P that might influence the outcome of interest. Hence, selection
on observables can generally be addressed through regression analysis (though, as we will see
later, there are other possibilities, such as matching estimators and the closely related method of
propensity score matching that can be applied in this setting).

What if we could not observe all of the variables that influence both program assignment and
the outcome of interest? Continuing the example, suppose that we cannot observe X. Instead we
observe Y and P for a sample of N individuals. That is, we observe the pair of realizations of Y
and P {Yi, Pi} for each of i = 1, ..., N individuals in the sample. With this data, the ordinary least
squares estimators γ̂1 and γ̂2 for the simple model

Y = γ1 + γ2 · P + ε

(i.e. the estimates that emerge when we regress Y on P ) are given by

γ̂2 =

∑N
i=1(Pi − P ) · (Yi − Y )∑N

i=1(Pi − P )2
=

∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

and
γ̂1 = Y − γ̂2P

where

Y =

∑N
i=1 Yi
N

and P =

∑N
i=1 Pi
N

The key question before us is whether a causal interpretation can be attached to the estimate γ̂2.
In other words, will the estimate of γ̂2 capture true program impact: the variation in Y caused by
variation in P?

The first step in answering this question is to recognize that the estimator

γ̂2 =

∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

is a random variable. Clearly, we must have data to estimate any statistical model, including the
parameters γ̂1 and γ̂2 for the simple model

Y = γ1 + γ2 · P + ε

In other words, there must be N individuals for whom we observe P and Y for each. This data
typically represents a sample of N individuals from some larger population of individuals.

However, in different samples we would expect some variation in the mix of values Y and P
that the N individuals would experience. But such variation will inevitably lead to some degree
of variation in the values of γ̂1 and γ̂2 calculated for each sample. For instance, if we repeatedly
selected samples of 100 individuals from the American adult population we would expect some
variation between those samples in the mix of heights within them. We would then experience
some variation across the samples in terms of the estimated average height obtained from each.
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An immediate implication is that a particular estimate from a given sample is typically not going
to equal the exact value of the parameter we are seeking to estimate. Rather, such estimates will
typically vary from sample to sample. This variation is called sampling variation . For instance,
in the simple example of sampling 100 American adults and recording their height, the object might
be to use that sample to form an estimate of the average height of American adults. However, the
actual estimates of average height would vary across repeated samples of 100 American adults.
Nonetheless, there is clearly some actual average height for the entire population of American
adults. If nothing else, at any given point in time, there is an exact, finite number of American
adults (even if we don’t know what that number is) and each has a precise height. But the actual
estimates based on samples from that population vary (hopefully) around that number.

Given such sampling variation, how can we ever know whether our method of estimation (or,
in the language of statistics, our estimator) is any good? More precisely, how can we ever know
whether it is estimating the thing we want it to estimate? There are two particularly commonly
invoked indicators of this dimension of performance. They are:

Unbiasedness: Because it is a random variable an estimator will have an expectation
E(·). An estimator is unbiased if its expectation E(·) is in fact the true value of the
parameter for which we wish to form an estimate. For instance, in the simple example
of drawing a sample of 100 American adults and calculating the average height for that
sample, the question is whether that sample average estimate is an unbiased estimator
of the average height of American adults. Unbiasedness is unrelated to sample size. A
somewhat crude but useful way of thinking about unbiasedness is that it asks whether
an estimator will, on repeated selection of new samples and re-computation of estimates,
produce a stream of estimates that are “right on average”;

Consistency: Because an estimator is a random variable, it has a probability dis-
tribution. In other words, it has probabilities attached to the possible values that it
can take in a given sample. An estimator is consistent if, as sample size increases, the
values that it can take on with positive probability become increasingly concentrated
on the true value of the parameter one wishes to estimate. In the case of an estimator
with continuous range, it is consistent if its probability density collapses around the
parameter we wish to estimate as sample size grows. A somewhat crude but useful
way of thinking about consistency is that it establishes that values for the estimator
that deviate from that of the true parameter we wish to estimate become increasingly
improbable as sample size increases.

An estimator can be biased but consistent. Roughly, it can be biased in smaller samples but
nonetheless consistent as sample size grows.

For present purposes, we will focus on unbiasedness. To understand whether the expectation
of γ̂2, E(γ̂2), is unbiased (i.e. equals the true program impact), let us fix ideas by considering the
implications of running the simple regression model (i.e. regressing Y on P ) when the true data
generating process is instead given by

Y = β1 + β2 · P + β3 · x+ e

where β2 is the causal effect of the program (i.e. when one switches from being a non-participant
(P = 0) to participant (P = 1) Y changes by β2). We make the following assumptions about this
model:

corr (P, e) = 0
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corr (x, e) = 0

These two assumptions guarantee that the true regression error e is a truly independent, idiosyn-
cratic error term unrelated to the regressors x and P .

The expected value of the ordinary least squares estimate (the key parameter of interest in this
case) is given by

E(γ̂2) = E

(∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

)
= E

(∑N
i=1(Pi − P ) · (β1 + β2 · P + β3 · x+ e)∑N

i=1(Pi − P )2

)

Notice that we insert the true data generating process y = β1 + β2 · P + β3 · x+ e in order to take
the expectation of γ̂2 from the incorrect (in the sense of not fully reflecting the true data generating
process) model y = γ1 + γ2 · P + ε. We can then continue to take the expectation:

E(γ̂2) = E

(
β1
∑N
i=1(Pi − P )∑N

i=1(Pi − P )2
+
β2
∑N
i=1(Pi − P ) · Pi∑N
i=1(Pi − P )2

+
β3
∑N
i=1(Pi − P ) · xi∑N
i=1(Pi − P )2

+

∑N
i=1(Pi − P ) · ei∑N
i=1(Pi − P )2

)

= E

(
β1 · 0 + β2 ·

∑N
i=1(Pi − P ) · (Pi − P )∑N

i=1(Pi − P )2
+
β3
∑N
i=1(Pi − P ) · xi∑N
i=1(Pi − P )2

+

∑N
i=1(Pi − P ) · ei∑N
i=1(Pi − P )2

)

= β2 + β3E

(∑N
i=1(Pi − P ) · xi∑N
i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · ei∑N
i=1(Pi − P )2

)
= β2 + β3 · E(η̂2)

The penultimate step exploits the independence of P and e (the independently distributed random
error assumed earlier), so that

E

(∑N
i=1(Pi − P ) · ei∑N
i=1(Pi − P )2

)
= 0

We have the overall result that E(γ̂2) = β2 + β3 · E(η̂2).
Thus, when we estimate the parameters of the model Y = γ1 + γ2 · P + ε when the true data

generating process is in fact Y = β1 + β2 · P + β3 · x + e the estimate of γ2, γ̂2, does not have an
expected value equal to the true parameter of interest β2. Instead, we get the rather odd looking
hybrid result E(γ̂2) = β2 + β3 ·E(η̂2). This means that the true parameter of interest β2 is indeed
buried in the estimate, but is obscured by the addition of the term β3 · E(η̂2).

Notice that η̂2 is equal to ∑N
i=1(Pi − P ) · xi∑N
i=1(Pi − P )2

But this is just the ordinary least squares estimate of η2 from the model x = η1 + η2 · P + ζ
(where ζ is once again just a random error term independently distributed from the regressor P ).
Thus the extra term is simply the causal relationship between x and Y (i.e. β3), weighted by the
estimated relationship between x and the included variable P , or E(η̂2). Note that if there is either
no relationship between x and Y or no relationship between x and P , this troublesome term drops
out and E(γ̂2) = β2: the ordinary least squares estimator is indeed providing an unbiased estimate
of β2.

Behind all of this math is a simple intuitive point: when you fail to include an explanatory
variable that is correlated both with the explanatory variable of interest and the outcome, you
cannot cleanly recover an estimate of the causal effect of the included (in the regression) variable of
interest on the outcome. The reason is that the explanatory variable of interest (in our case P ) now
serves two roles empirically: as a control for the variation you want to capture (that of the included
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variable itself) and as a control for the excluded variable (with which it is correlated, and hence
can serve as a proxy). In other words, we can think of our estimate of the effect of the variable of
interest under these circumstances as now representing some linear combination of its own direct
causal effect and the effect of the omitted variables for which it serves as a proxy weighted by the
relationship between the included explanatory variable of interest and the excluded variable(s). For
this reason the bias is often referred to as omitted variable bias.

The flip side of this bias is that it can, in the context of this basic example, be removed simply by
adding x as a regressor and then regressing Y on P and x. In other words, it can be avoided simply
by estimating the true model. In this example, we have focused on the possibility of a single omitted
regressor x. In practice, however, an outcome of interest Y will probably have many determinants,
some of which will be observed and some of which will not.9 In general, regression analysis can
recover an unbiased estimate of the causal effect of P on Y only if all other determinants of Y that
are also correlated with P are also included in the regression. Once we move beyond the point
of a single potentially omitted regressor, the direction of bias becomes much more complicated to
determine. But, to be sure, there will be bias.

This is illustrated this in Figure 2.5. We consider three types of characteristics. X1 are those
characteristics that directly influence the outcome Y but are unrelated to program participation P .
X2 are characteristics that shape program participation P but have no direct role in determining the
outcome Y . Finally, X3 are variables that influence both the program participation decision and
the outcome. Of the three types of background characteristics, unbiased estimation of program
impact through regression requires that X3 be included in the regression as controls. X3 are
variables that influence program participation. Hence individuals sort into the participant and non-
participant groups according to their values for X3, and the distribution of values for X3 would
vary between the participant and non-participant groups. However, X3 also shapes the outcome
Y . The participant and non-participant groups would thus differ by background characteristics
that influence the outcome Y , making it difficult to ascribe differences in mean outcomes between
the two groups to program participation alone. From a regression standpoint, P no longer signals
just program participation, but also average background characteristics.

The same complication does not arise with either X1 or X2. X1 shapes the outcome but not
program participation. Hence, we would expect the distribution of it to be the same between the
participants and non-participants. X2 influences program participation, and hence its distribution
should differ between the participant and non-participant groups. However, since it has no influence
on the outcome this is of little consequence from the standpoint of evaluating program impact via
either simple comparison of mean outcomes between participants and non-participants or regression
of Y on P .

Finally, we consider omitted variable bias from a slightly different angle. We have considered
the consequences of estimating the parameters γ1 and γ2 (with a special interest in γ2) of the simple
model

Y = γ1 + γ2 · P + ε

when the true model is
Y = β1 + β2 · P + β3 · x+ e

As we have seen, the ordinary least squares estimate γ̂2 will be biased when P and x are correlated
and x influences Y (i.e. when β3 6= 0). Given that the latter is the true model and if β3 6= 0, in the
simple model x is relegated to the error term ε of the simple model. If, as well, P and x are correlated

9Extending to this more complicated case would require either extraordinarily complicated equations or resorting
to matrix algebra, either of which would represent a diversion at this point.
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(the other condition required for bias), we are confronted with an important complication:

corr (P, ε) 6= 0

Thus, the problem of bias in the simple model can be viewed as one of correlation between the
observed regressor P and the error term in the estimated model. Omitted variable bias is often
posed in this way: correlation between observed regressors and unobserved characteristics (we will
often refer to these simply as unobservables) relegated to the error term.10 This highlights the
proxy role of the observed regressor(s) (in this case P ) in the setting of omitted variable bias. The
regressor serves not only as a control for itself but also for other regressors relegated to the error
term with which the observed regressor(s) is correlated.11

We conclude with a numerical example (this numerical example is contained in the STATA
do-file 2.1.do). This example considers the consequences of estimating the “wrong” model

Y = γ1 + γ2 · x1 + ε

when the “true” model is
Y = β1 + β2 · x1 + β3 · x2 + e

10If one were to estimate the simple model by ordinary least squares, in the estimation sample P would be
uncorrelated with the estimated errors ε̂. This is true by construction and does not mean P is uncorrelated with the
error ε in the underlying true regression model.

11It is important to remember at this point that the entire discussion of omitted variable bias in the regression
has focused on the idea of a correlation between x and P reflected in a greater frequency of some values for x at
P = 1 than P = 0. It has not introduced the explicit possibility that some values of x occur only when P = 0 or
P = 1. This is the aforementioned failure of common support. This complication will be dealt more explicitly in a
subsequent chapter considering matching estimators.

Figure 2.5: Controlling for Observables X
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Specifically, suppose that we randomly generate 30,000 observations based on these two assumed
equations:

x = 1 + P + ex

Y = 1− .5 · P + 1.5 · x+ e

where ex, e ∼ N(0,25).12 P equals 1 if an N(0,4) random variable exceeds 0 and equals 0 otherwise.
We have, with the second equation, generated data based on the true model. With the first equation
we have established a correlation between the regressors P and x.

The resulting sample is considered in STATA Output 2.1. e and P have means of roughly zero
at .0391012 and .5071333, respectively, and standard deviations of 5.017912 and .4999574. These
are entirely sensible values. The mean and standard error for e are right in line with expectations
for an N(0,25) random variable. The mean of P should be around .5: P equals 1 if a normally
distributed random variable with a mean of 0 is greater than 0 (which we would expect half the
time) and equals 0 if it does not. It is also a binary variable, with variance µ · (1 − µ) ( where µ
is the mean of P ) or .5·(1-.5)=.25, leading to a standard error of .5 (i.e. the square root of .25).
Notice as well that the mean of x is around 1.5, which it should be according by expectation:

E (x) = E (1 + P + ex) = E (1) + E (P ) + E (ex) = 1 + .5 + 0 = 1.5

Finally, note P and x are correlated (at 0.0928 correlation), which we expect by construction.
Let us first regress Y on P and x. The results are presented in STATA Output 2.2. These

results are right in line with where we would hope they would be, given the true data generating
process behind them: the estimated coefficient on P is, at -.5152055, around -.5 while that on the
coefficient on x is, at 1.501488, in the neighborhood of 1.5. In particular, note that the relationship
between P and x has not complicated estimation since we control for both regressors.

Next we estimate the “wrong”regression model (i.e. omitting the variable x ). The results are in
STATA Output 2.3. We can now see that the omission of x has led to an estimate of the coefficient
on P that deviates substantially from that underlying the true data generating process (.8838561,
against a true value of -.5). This likely reflects omitted variable bias, and from this example it
should be clear how bad it really can be.

We next demonstrate that the “bias” holds true to the earlier analytical result that

E(γ̂2) = β2 + β3 · E(η̂2)

To do this, let us regress x on P to form an estimate of η2. The estimates are provided in STATA
Output 2.4. Combining these results, note that, following the results on omitted variable bias
outlined above, the estimate of the coefficient on P (.8838561) from the “wrong” regression can
be nearly recovered from the estimates from the correct model and the slope coefficient from the
regression of x on P :

−.5152055 + 1.501488 · .9317832 = .88385579

which is just about .8838561 (in the STATA .do file the fit is exact; the difference in the two
calculations reflects rounding differences). Notice that we showed this exclusively with estimated
parameters. The omitted variable bias likely evident in the “wrong” regression is substantial: the
sign of the estimated effect of x actually became positive and significant!

12a ∼ N(b,c) means a is distributed as a normal random variable with mean ‘b’ and variance ‘c’. In the context of
this example we would thus be pseudo-randomly drawing 30,000 observations for a normally distributed variable a
with mean ‘b’ and variance ‘c’.
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STATA Output 2.1 (2.1.do)

. * Summary statistics for the errors and regressors

. summarize e P x

Variable Obs Mean Std. Dev. Min Max

e 30000 .0391012 5.017912 -22.59459 20.19439
P 30000 .5071333 .4999574 0 1
x 30000 1.491703 5.022221 -18.59465 22.38237

.

. * Correlations between errors and regressors

. correlate e P x
(obs=30000)

e P x

e 1.0000
P -0.0014 1.0000
x 0.0013 0.0928 1.0000

In terms of the correlations, P is uncorrelated with the fitted errors from the regression of y on
P . However, P ’s correlation with the true regression error for the “wrong” model (i.e. 1.5 · x+ e,
which is ε from y = γ1 + γ2 · P + ε) is .0764. Since the correlation between x1 and the error term
from the “true” regression (e) is essentially zero (-.00014) this means that the correlation between
P and ε is driven by the presence of 1.5 · x in ε.

STATA Output 2.2 (2.1.do)

. * Regressing y on P and x

. regress y P x

Source SS df MS Number of obs = 30000
F( 2, 29997) =33696.75

Model 1697036.77 2 848518.384 Prob > F = 0.0000
Residual 755354.837 29997 25.1810127 R-squared = 0.6920

Adj R-squared = 0.6920
Total 2452391.61 29999 81.7491118 Root MSE = 5.0181

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P -.5152055 .0582005 -8.85 0.000 -.6292809 -.40113
x 1.501488 .0057938 259.15 0.000 1.490132 1.512845

_cons 1.044592 .0416881 25.06 0.000 .9628816 1.126303

This bias will not disappear with increasing sample size because the ordinary least squares
estimator of the effect of P in the second regression is not consistent. This was a simple example,
but as such it serves as a powerful illustration of how easily omitted variable bias can arise, and
how enormous its consequences can be: in this case, it would lead us to draw a completely wrong
conclusion about the impact of P on y.

Precision matters when discussing the kind of topics at the center of this manual, and here we
need to be precise. Technically, we have not directly demonstrated that estimated program impact
from the “wrong” model is biased or inconsistent. For instance, biasedness means essentially that
the estimate is wrong on average. To show biasedness we would then technically need to re-
simulate many, many new samples in the fashion of this example, re-estimate program impact for
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each sample with the “wrong” model, and then take the average of the program estimates across
these samples. Only if that average differed substantially from -.5 could we be sure that the “wrong”
model generates biased estimates of program impact.

STATA Output 2.3 (2.1.do)

. * Regressing y on x1 alone

. regress y P

Source SS df MS Number of obs = 30000
F( 1, 29998) = 71.83

Model 5857.81989 1 5857.81989 Prob > F = 0.0000
Residual 2446533.79 29998 81.5565633 R-squared = 0.0024

Adj R-squared = 0.0024
Total 2452391.61 29999 81.7491118 Root MSE = 9.0309

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .8838561 .1042901 8.47 0.000 .6794431 1.088269
_cons 2.574856 .0742684 34.67 0.000 2.429287 2.720426

Thus, technically, we cannot say for certain that the estimate of impact from application of
the “wrong model” to a single sample definitely reflects bias. Frankly, it is always possible that it
reflects ordinary variation in estimate values from sample to sample. However, the degree to which
the estimate matches expected bias per the omitted variable bias formula is powerful prima facie
evidence for bias.

STATA Output 2.4 (2.1.do)

. * Regressing x on P

. regress x P

Source SS df MS Number of obs = 30000
F( 1, 29998) = 260.35

Model 6510.3235 1 6510.3235 Prob > F = 0.0000
Residual 750145.646 29998 25.006522 R-squared = 0.0086

Adj R-squared = 0.0086
Total 756655.969 29999 25.2227064 Root MSE = 5.0007

x Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .9317832 .0577484 16.14 0.000 .8185937 1.044973
_cons 1.019165 .0411246 24.78 0.000 .9385589 1.099771

Nonetheless, the reader should always bear in mind that when estimation results that appear
to match true program impact are presented in this manual it does not necessarily mean that the
estimator is unbiased or consistent. Technically, it could be biased and/or inconsistent, and the
closeness of the estimate presented to the truth could reflect a random fluke of sampling variation.
By a similar token, a substantial difference between an estimate and true impact does not prove
biasedness: it might simply be an artifact of sample by sample variation in estimates generated by
an unbiased estimator.
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2.3.3 Some Specific Examples

Let us consider a few more concrete examples. Suppose that we wish to understand the link between
health (h) and income (I). To assess this relationship, we estimate the linear model

h = β1 + β2 · I + e

The question is thus whether the ordinary least squares estimate β̂2 emerging from this exercise
reveals the true causal relationship between income and health. The answer is perhaps, but only
if there are not additional variables that might interfere with our ability to assess this causal link.
For instance, education is thought to be a factor in the health production relationship. This is in
and of itself not a problem as long as income and education are uncorrelated. However, the idea
that income and education are uncorrelated is a difficult one to accept. Thus, unfortunately, it
seems likely that β̂2 reflects not only the causal relationship between income and health but also
the relationship between education and health. Put a bit differently, because education influences
health and income and education and income are related, in a regression analysis of health on
income the variable income serves not only to identify its own causal role but also serves as a proxy
for education. Thus, β̂2 is biased as an estimator of the causal relationship between income and
health.

Now let us shift focus toward a few examples more explicitly related to the problem of program
evaluation. Suppose that we wish to understand the link between wages (w) and participation in a
job training program (J , where J =1 if an individual participates and 0 if they do not). To assess
this relationship, we might estimate the linear regression model

w = β1 + β2 · J + e

by regressing w on J . Once again, the question is whether the ordinary least squares estimate
β̂2 emerging from regression of w on J reveals the true causal relationship between wages and
participation in the program (i.e. whether E(β̂2) = β2). And, once again, the answer is perhaps,
but only if there are not additional variables that might interfere with our ability to estimate this
causal link. For instance, more motivated individuals may be more likely to enroll in the program.
On the other hand, it could be that those with a poorer skill set, or less job market experience,
enroll in the program. These possibilities are not a concern so long as these factors do not affect
wages.

Yet, once again, in fact it seems likely that both motivation and skills or job market experience
might influence wages. Thus, unfortunately, it seems likely that the estimate β̂2 emerging from
simple regression of w on J reflects not only the causal relationship between enrollment in the
program and wages but also the relationship between these other factors and wages. As this
example makes clear, the pathways by which omitted variable bias can enter the picture might be
varied and complex, and hence it can be difficult to anticipate the direction of the bias.

Finally, consider an example where the omitted variables are not necessarily individual-level
explanatory variables. Suppose that we wish to understand the link between a woman’s pregnancy
status (F , which equals 1 if the woman is pregnant and 0 otherwise) and her community’s exposure
to a fertility control program (P ). This really implies that we are interested in the underlying
latent variable relationship between F ∗ (where F=1 if F ∗ ≥ 0 and F = 0 if F ∗ < 0) and program
participation P , and thus the latent variable model

F ∗ = β1 + β2 · P + e

We would estimate this with a binary regression model such as the linear probability model (which
is estimated by ordinary least squares). However, even though the program is assigned at the
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community level (as opposed to instances where the design of the program is such that individuals
must enroll themselves in the program), there is still reason to be concerned about omitted variable
bias. The principal reason for concern is the possibility that the program is not randomly assigned
across communities. If there are community-level factors that guide both program assignment and
fertility, then estimates of β2 from the simple regression of F on P will once again be biased (e.g.
E(β̂2) 6= β2) and inconsistent.

This is the endogenous program placement problem (Rosenzweig and Wolpin (1986), Pitt
et al. (1993), Gertler and Molyneaux (1994), Angeles et al. (1998), etc.). Discussions of this
problem often focus on the possibility of a program assigned by a central authority relying on
an assignment rule that depends on community-level characteristics. However, this can become a
problem even if the program is not centrally assigned, as in the case where community leaders might
of their own initiative enroll their communities. For instance, communities where there is a greater,
and typically unobserved, cultural commitment to reducing fertility (or perhaps less resistance to
the idea of family planning) might be more likely to become enrolled in the program. However,
these community-level factors are also likely to influence a woman’s fertility, thus introducing an
avenue for familiar omitted variable bias. In this case, the estimate β̂2 emerging from regression of
F on P serves not only to capture the program effect, but also as a proxy for the community-level
factors that guide program assignment (and fertility).

We have now dedicated considerable space to characterizing the problem of program evaluation,
in part because a solid understanding of the various facets of the problem will make it much easier
to understand the proposed solutions discussed in the coming chapters. The critical lessons from
this discussion are:

• The ideal circumstance for evaluating a program is one in which assignment to the program
across units of observation is random;

• Randomization of program assignment can easily break down. For the purpose of evaluating
programs by comparing outcomes for groups exposed to and not exposed to the program, non-
random assignment into the program (whether by means of observed or unobserved variables)
introduces a potentially serious complication;

• However, methods that control for the role of observed variables in shaping program par-
ticipation will not necessarily remove bias associated with unobserved variables that guide
assignment. For instance, all omitted variables (i.e. those associated with program partici-
pation and the outcome of interest) must be included to remove the bias;

• The direction of the bias can be difficult to predict.

Before proceeding to our survey of the different program evaluation methodologies, we first briefly
discuss a few other important issues surrounding program impact evaluation.

2.4 Other Considerations

Before shifting gears to review specific statistical methods for evaluating programs, there are a few
issues that, while not necessarily a technically integral dimension of the various program impact
evaluation methodologies per se, are important background considerations to bear in mind when
designing, conducting and, in particular, drawing conclusions from evaluations. In some sense these
issues transcend the particulars of the various estimators but at the same time are distinct from the
basic challenge of program evaluation in the sense that they might speak to the usefulness of the
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results generated by the particular methodology employed. Some of these issues have been touched
on thus far, but it is still useful to round out the discussion.

2.4.1 Causality

In this manual, when we refer to a causal relationship between two variables, we mean a cause
and effect relationship: variation in one of these variables causes variation in the other. Thus, as
one variable is perturbed that perturbation will, all other things being equal, change the expected
value of another variable. For simplicity, we also typically focus on one-way causality (i.e. we do
not focus on the case where each variable shifts the other).

However, this is not the only conceptualization of causality that has been considered in statistics.
Indeed, in statistics the word “causality” does not always refer to a cause and effect relationship.
For instance, Granger (1969) focused on the case where one variable is simply empirically predictive
of another. This is commonly referred to as Granger Causality. To fix ideas, let us consider
this approach to causality in the context of estimation that Granger did: time series. First, let
us assume that y and x are stationary time series. This means, essentially, that their probability
distribution has a structure that is stable over time.13 Then, consider the regression model

yt = β0 + β1 · yt−1 + β2 · yt−2 + ...+ βk · yt−k + γ1 · xt−1 + γ2 · xt−2 + ...+ γs · xt−s + υt

This is simply a regression of y at time t on lagged values of y as well as lagged values for another
variable x thought to be a potential significant predictor of y. Roughly, if any of the γs are
individually significant and those γ that are individually significant are also collectively significant
(according to an F-test of their joint significance) then x “Granger causes” y.

Granger Causality does not necessarily indicate an actual cause and effect link between y and
x, whereby variation in x actually causes variation in the expected value of y. For instance, it could
be that the predictive power of x is due to an unobserved third variable (relegated to the error
term υ in the above regression) that actually causes variation in both. In this sense it is not true
behavioral causality, but instead a kind of predictive quality.

An approach to causality to which frequent appeal is made in epidemiology is the Bradford Hill
criteria. Originally proposed by the British epidemiologist Sir Austin Bradford Hill (Hill 1965),
the Bradford Hill criteria represent in essence a constellation of criteria for establishing a causal
relationship. These criteria are:

1. Strength- The stronger the association between two variables, the more likely that a causal
link exists;

2. Consistency- Essentially, the more consistently a link is found in different settings (places,
samples, researchers) the more likely it is to be causal;

3. Specificity- The more specific the site and diseases, and hence the more readily alternative
explanations can be ruled out, the more likely a statistical association is to reflect causality;

4. Temporality- Effects should come after their causes. In other words, one variable is more
likely to cause another if variation in that variable precedes that in the variable whose variation
it is thought to cause;

13Formally, a process is stationary if time itself does not shift its joint probability distribution. Consider Zt to
be a variable the value of which changes from one time period to the next. Let F (zk, zk+1, ..., zk+d) be the joint
distribution for Zt during times t = k, k + 1, k + 2, ..., k + d. Then, Zt is stationary if the joint distribution does not
depend on time: F (zk, zk+1, ..., zk+d) = F (zl, zl+1, ..., zl+d) where l is some other base time period (i.e. l 6= k). In
layman’s terms, the underlying statistical relationships do not evolve as time passes.
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5. Biological gradient- Essentially, a higher dosage or greater exposure should be more likely
to provoke the effect in question. At the same time, there is some admission of possible
threshold effects or effects if the hypothesized casual factor is simply present or occurs at all;

6. Analogy- Similar factors having a similar effect generally supports a causal interpretation;

7. Coherence- Essentially, that field (i.e. epidemiological, in the original context) and labora-
tory findings are consistent;

8. Experiment- The more plausibly experimental (in the sense of randomized variation of the
independent variable in question) is the setting, the more likely an association is to be causal;

9. Plausibility- Whether there is a theoretically plausible mechanism for a casual and effect
relationship.

Certainly some of these criteria are debatable. For instance, it is not clear that strength of associ-
ation is really integral to a persuasive definition causality and, hence, why it should be a factor in
determining it. Nonetheless, they remain a popular framework for approaching causality, particu-
larly in epidemiology but also in other biomedical fields.

Given that the Bradford Hill criteria are a constellation of somewhat independent criteria and
that many of them do not themselves imply a clear absolute standard (e.g. strength of association,
plausibility, etc.), there is not necessarily a specific well-established threshold for judging whether,
per the Bradford Hill criteria, a statistical association reflects a causal relationship. It would seem
that in practice assessment of likely causality often rests on somewhat vague, subjective and inexact
appeals to the extent to which a given statistical association generally meets these criteria. Indeed,
in some sense there is an analogy to a circumstantial case in law in the sense that there is no
lynchpin condition that establishes causality. Instead, causality is accepted per a preponderance of
essentially circumstantial evidence, no element of which is unequivocally necessary and sufficient
for establishing causality. Indeed, the criteria are arguably not even cumulatively sufficient for
establishing it.

In this manual we frame causality in a simpler and more direct way. Put simply, the causal
impact of a program is

Y 1 − Y 0

In other words, it is the difference between the outcome the individual experiences if they partic-
ipate in the program and the outcome that they experience if they do not participate. Because
the experience of participation is the only thing that differs for the individual between potential
outcomes Y 1 and Y 0, any difference between these two potential outcomes must be caused by the
program. The expected causal impact of the program would then be

E
(
Y 1 − Y 0

)
The analog to this in any sample would be the average difference for that sample.

There can be variations on this that capture the causal impact of the program for different
subgroups of the population of interest. For example, we might be particularly interested in the
causal impact of the program for those who participate:

E
(
Y 1 − Y 0|P = 1

)
The foundation of such parameters is still, however, the difference in the potential outcomes Y 1

and Y 0.
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The impact evaluation methods (that is, the estimators of program impact) that we consider
in this manual generate estimates of the causal impact of a program so defined. The estimators
typically involve assumptions, and provided the real world behavioral processes that generated the
estimation sample conform to these assumptions, the resulting estimates of impact are causal per
this simple but rather stringent definition. Therefore, these models do not offer a constellation of
evidence, but instead rely on assumptions. If the assumptions are reasonable, the estimates are
causal.

2.4.2 Representative Sampling

The program impact estimators discussed in this manual tend to rely on micro-level data (i.e.
samples of individuals, households, firms, etc.). The collection of such data has been the subject
of a vast technical literature and has utilized many different techniques, strategies, etc., to obtain
data with a dizzying array of designs and features. The unifying theme is that, essentially, the
process of data generation nearly always comes down to two steps: the selection of a sample of the
units of observation (which is referred to as “sampling”), and the gathering of information from
that sample. This subsection is concerned with the first step.14

The goal of the sampling process is typically to obtain a sample representative of the population
from which that sample is selected. By representative we mean that the expected distribution of
types of units of observation (for instance, in the case of individuals one can think of types in
terms of age, wealth, education, etc.) in the resulting sample reflects that in the population as a
whole from which it was drawn. In defining the term thusly, we abstract away from the possibility
that, by random chance, a sample might differ (possibly substantially) in characteristics from the
population from which it is drawn (for much the same reason that one really can flip a coin ten
times with ten “heads” as the result). We also ignore the complication of probability sampling,
whereby the sample itself is not strictly speaking representative but the sampling process yields
information from which one can generate weights that might compensate for this.

Such a representative sample could, in theory, support unbiased estimation. As we have seen,
an unbiased estimate is one that is “right on average” for the population from which the sample was
selected. An implication of representative sampling is that, were one to draw many such samples
from the population and form an estimate of the population parameter from each sample with
an unbiased estimator, the average of those estimates would equal the true population value for
that parameter.15 For instance, suppose we drew many, many16 representative samples of 10,000
Americans and interviewed them regarding their incomes. From each sample we could form an
estimate of the average income of Americans. In principle, the average of these estimates would

14The second step is not explicitly considered very much in this manual beyond discussion of the structural re-
quirements of data sources for various impact evaluation estimations (e.g. the estimator might require data that is
repeated measures, contains certain types of variables in the sense of the operational role they might play in the
implementation of that estimator, etc.). In short, the second step involves the specific information, or instruments, to
be collected regarding the sample selected. We generally leave to the reader the task of deciding, for instance, which
outcome Y is of interest in gauging program impact or which controls X are most appropriate in a given application
(though, particularly in the case of the latter, we will often specify empirical properties that they must satisfy to
insure internally valid program impact estimates). For further guidance on this subject, we refer the reader to the
various compendiums of indicators for monitoring and evaluation that have been developed in various contexts. For
instance, in the family planning setting Bertrand and Escudero (2002) is an excellent example.

15Per the discussion of internal and external validity below, the application of the unbiased estimator within each
sample establishes that the estimate for that sample will be internally valid (i.e. in our context that it will capture a
causal relationship). Representative sampling insures that the estimate will then be externally valid for the population
from which representative sampling was done.

16In theory, by “many” we mean an infinite number of samples.
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be the true average income of Americans. In our earlier discussion, the focus for considering
unbiasedness was the estimator. Now it is the sampling process.

If a sample was not representative of the population from which it was drawn it is unclear how
externally valid it would be (i.e how relevant it would be to that larger population). Suppose,
for example, that the sample of 10,000 Americans was selected by telephoning families on land
lines and then simply asking the respondent within the household who answers the phone about
their income. This procedure will clearly under-sample (compared to their true presence in the
population) those residing in large households (because the probability of being a respondent in
such a household is, all other things being equal, lower) and those in households not served by
traditional land lines.

An estimate of average income from such a sample will likely be skewed from the unbiased ideal
(i.e. the true average income of Americans) because the types of individuals in the sample probably
do not reflect the true distribution of individuals across the population. Moreover, this deviation is
not due to random variation, but instead a systematic product of the sampling process. We would
thus expect repeated samples drawn in this fashion to be skewed on average and thus estimates
from them to be biased.

To fix ideas more directly on the program impact evaluation literature, suppose for the sake of
discussion that we could in fact observe Y 1 and Y 0 for everyone sampled from some population.
Suppose as well that we select a sample of sizeN from that population in some fashion that somehow
leads to program participants (who likely had comparatively higher personal returns to program
participation) having greater representation in the sample than their presence in the population
might warrant. An estimate of average program impact (i.e. the average treatment effect) would
be along the lines of ∑N

i=1(Y
1
i − Y 0

i )

N

where i = 1, ..., N indexes individuals in the sample. If the sample is dominated (compared to their
true share in the population) by participants, who likely have a relatively high personal impact
Y 1 − Y 0, we might expect that our estimate of the average treatment effect would exaggerate its
true population value.

The same consideration might apply to the possibility of using a sample drawn (even in a
representative manner) from one population to make inferences about the circumstances prevailing
in another population. Consider our earlier example involving the income of Americans. Suppose
that our sample was representative only of Americans between the ages of 18 and 50. Though such
a sample might be the basis for an unbiased estimate of income for Americans in that age range,
it might provide a misleading sense of average income for all Americans.

Consider as well a modification of the program impact evaluation example introduced earlier
in this sub-section. Suppose now that the sample of N individuals was drawn from only program
participants. It then becomes difficult to know how relevant the estimator∑N

i=1(Y
1
i − Y 0

i )

N

is to the program returns of non-participants, who are not represented in the sample used for
program impact estimation.

Although it may seem to this point that the main concern in this discussion is external validity,
failures of representativeness can be a tricky business. There are some failures of representativeness
that can even threaten internal validity. In the extreme, it would not be possible to form an unbiased
estimate even for the sample for which we do observe all of the information necessary to compute
an estimate.
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For now we conclude simply by noting that the representativeness of the sample used is an
important determinant of the degree to which the resulting estimate of program impact can be
assumed to hold in other settings, which might include the larger population from which the
sample is drawn (here the concern would be that the sample was not selected from that population
in a fashion that insured representativeness) or other populations of interest. Indeed, it can be
an important determinant of whether the program impact estimate is even reasonable within the
estimation sample (i.e. internally valid). Those conducting program impact evaluations should be
aware that the sampling process by which their samples were selected are the foundation for their
work, and that, as in architecture, a sound structure can rarely emerge from a flawed foundation.

2.4.3 Observer and Hawthorne Effects

It is sometimes the case that the individuals who are the subjects of observational studies are aware
of the fact that they are being monitored or will be monitored. For instance, micro-level data may
be drawn from a panel study of households and their members, in which case these individuals
are typically aware of the prospect of their ongoing participation in a survey in which their future
actions would be observed and recorded. More generally, a researcher will have available to them
data on the behavior of and outcomes experienced by individuals only if they were monitored in
some fashion or another. However, the fact that they knew that they were being monitored may have
altered their behavior (for example, to avoid perceived shame or conform to social expectations).

In the social sciences, this idea is sometimes referred to as the Heisenberg Uncertainty
Principle but perhaps more appropriately17 defined as an Observer effect: the very fact that
people know they are being watched might influence their decisions. This might limit our ability to
draw broader conclusions with information drawn from observational data. The behavior of those
observed might have been very different had they not been observed.

A related complication is often referred to as the Hawthorne effect, whereby participants in a
study may alter their behavior as a result of their awareness of the uniqueness or distinctiveness of
their status as participants. This possibility was first noted in the Hawthorne Plant of the Western
Electric Company. At Hawthorne, Western Electric conducted a series of experiments designed to
evaluate the effect of various innovations to working conditions on overall productivity. Many of
the results seemed counterintuitive. In one perverse example, productivity increased both when
the working environment was made brighter and when it was made darker.18

It has been widely hypothesized that the main factor driving the Hawthorne effect is the psychic
effect of knowing that one has been selected for special attention, for instance as a participant in
a study (perhaps that one’s activity has been deemed sufficiently important to be studied).19 For

17Werner Heisenberg (1901-76) was a physicist who introduced an uncertainty principle that is often popularly
interpreted as stating that the very act of observing something might influence its behavior. Though this is a
widespread and popular interpretation, it is not faithful to Heisenberg’s original assertion. Strictly speaking, the
Heisenberg Uncertainty Principle suggests that it is not possible to know simultaneously and with complete precision
the values of certain pairs of variables (referred to in physics as “canonically conjugate variables”). A famous example
is that one cannot simultaneously measure the precise position and momentum of a particle because there is a tradeoff
with respect to the accuracy with which the two can be measured. Thus, strictly speaking, the original Heisenberg
Uncertainty Principle is focused more on the limits of precise observation than the idea that observation would alter
the behavior of the observed.

18Interestingly, Levitt and List (2011) has called into question the degree to which the “Hawthorne Effect” actually
occurred during the original experiments at the Hawthorne plant itself.

19There seems to be a bit of disagreement about the basis for the Hawthorne effect. The Oxford English Dictio-
nary describes it thusly: “an improvement in the performance of workers resulting from a change in their working
conditions, and caused either by their response to innovation or by the feeling that they are being accorded some
attention.” In other instances, the focus seems to be more narrowly on involvement in a study or experiment.
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instance, those that are selected to participate may feel important or even empowered, leading to
effort levels that would not be forthcoming if they did not view their participation as such a mark
of distinction (as in when a pilot program is eventually extended to all of society). Alternatively, it
might be the case that participants in a more limited trial implementation of a program (or exper-
iment) are aware of its importance, and thus modify their behavior according to their perception
of the stakes of that experiment for society.

The implication of the Hawthorne effect is much the same as that of the Observer effect: it
undermines confidence in the degree to which results can be generalized. For instance, it undercuts
our ability to draw more general conclusions about the likely impact of a program based on the
information gathered from a purposeful study, such as an intentional experiment.

At first glance, it might seem as if the two refer to the same thing (and indeed, on a definitional
level some regard the two as identical). However, we believe that it is useful to make a distinction
between them and view Observer effects as arising simply because of being observed (and not
necessarily because of participating in a study, to which participants might be indifferent) and
Hawthorne effects as reflecting the awareness of receiving special attention, as in participation in
a study.20

The Observer effect can arise even with longstanding participants in a program already widely
implemented throughout society who might modify their behavior once they perceive themselves
to be under observation. For instance, women enrolled in a study of the efficacy of an established,
ongoing child nutrition program may alter (or report altering) their behavior in front of observers
in order to more closely conform with societal standards of appropriate parenting.

Hawthorne effects are more often ascribed to circumstances where participants somehow per-
ceive themselves to be unique or important for their selection for the program or study. Concep-
tually, Hawthorne effects can emerge even in circumstances where the behavior of individual units
of observation cannot be observed. For instance, it is conceivable that individual participants in
an experiment (in program or control groups) may increase their effort levels as a result of their
awareness of participation even if the end result of those intensified efforts is recorded only at the
organizational level.21 In any case, the critical concern with either Hawthorne or Observer effects is
the degree to which the conclusions drawn from an impact evaluation can be generalized to settings
where the program is implemented under more everyday (and thus less “special”) circumstances
when program participants and non-participants are not necessarily being observed or somehow
receiving special attention in the context of a study.

2.4.4 Impact Evaluation Based on Pilot or Trial Programs

Often, when program impact is evaluated, the statistical model is estimated with data obtained
from a setting where the program was operating on a limited pilot or trial basis. At that point, its
operations were either sufficiently limited that it is reasonable to assume that it could not influence

20We introduce this distinction for present purposes because we believe that it is conceptually useful. It is not nec-
essarily one that others draw or that is faithful to the details of the actual Hawthorne experiments (the interpretation
of which remains the subject of debate).

21To cite one more example, police officers in a study of alternative policing strategies might alter their behavior
because they fear that researchers will report sub-standard performance to superiors or simply because they wish to
avoid appearing lazy or inefficient in front of anyone else. Alternatively, they may behave more cautiously to avoid
endangering observers (as in when an officer cautiously awaits backup to avoid any collateral danger to a researcher
“riding along”). Under our taxonomy, these possibilities would most appropriately be viewed as observer effects.
They also might alter their behavior because their selection for inclusion in the study convinces them that their task
within the police force is particularly vital or highly regarded. This would perhaps be most properly viewed as a
Hawthorne effect. An interesting variation on the Hawthorne effect might arise if participating officers were aware of
the implications of the experiment and modified their behavior in order to influence the conclusions drawn from it.
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its larger operational basis or did so only to a miniscule degree reflective of its limited scale of
operations. However, when a program expands beyond its trial or pilot phase, it might begin to
influence aggregate variables that the researcher had been able to assume were constant (and thus
ignorable) when conducting evaluations with data based on more limited implementations of that
program.22 The basic point is that, as a program expands, it might begin to have an impact on
the overall environment within which it must operate. For instance, for the purposes of impact
evaluation using data on the experience of participants and non-participants drawn from limited
or pilot implementation of a job training program, the researcher can safely hold aggregates such
as overall market wage rates constant. However, as the program expands, it may begin to have
an aggregate, economy wide effect that will influence the value of various aggregate variables such
as productivity and wages. This might serve to dampen or amplify the original training program
impact observed for the more limited implementation (see, for example, Heckman et al. (1998)).
This is a kind of external validity concern: estimates obtained from the setting of limited program
deployment might be misleading indicators of program impact when the program is implemented
on a much wider and more influential scale.

A distinct concern with pilot or trial data is that it is not always the case that more widespread
implementation of the program will prove straightforward. In the extreme case, that which was
practical on a limited basis will prove completely impractical on a wider one. While this extreme
case this does not necessarily speak to the challenge of evaluating programs and the related concern
of making inferences about the implications of the program when applied on a wider scale (since its
infeasibility makes it a moot point), there are in the less extreme case more subtle complications
that might arise.

When a program is implemented on a limited or trial basis, it might have features that are
subtly altered when it is expanded. For instance, it is often the case that it is harder to maintain
the motivation or training of program personnel when it is implemented on a large scale. It could
also be the case that management constraints begin to assert themselves as the program expands.
There are other intangible elements of a program, such as the degree to which it offers participants
a friendly and personally attentive environment, that might erode as it expands. On the other
hand, there could be positive qualities to a program present on a large scale but absent in more
limited or trial implementations. Whatever the case may be, the essential point is the same: the
qualities of a program when implemented on a limited basis that led to one set of conclusions might
not remain after it has expanded. On a related note, one must also be mindful of the perils of
using an impact estimate of a program developed under one set of circumstances for the purposes
of extending it to another setting. For instance, even if a program could be replicated in all of its
particular details in another country, its impact might not be the same: the entire institutional
environment within which the program will operate will differ.

These in some sense appeal to the question of external validity analogous to that proposed
in the preceding discussion of partial versus general equilibrium effects. In essence, in both cases
the inferences concerning program impact obtained from a limited implementation of a program
might not provide a good indication of impact when the program operates on a far wider scale.
The two complications are distinct in that the partial versus general equilibrium tension reflects
the possibility that a program will, when operating on a wide enough scale, begin to influence
its operational environment, while the scaling up issue has more to do with the evolving internal

22The limited implementation impact is sometimes referred to as “partial equilibrium” while that when the pro-
gram operates on an economy-wide scale can be referred to as “general equilibrium”. The distinction is between
circumstances where the program is too small to influence economy-wide equilibrium values for aggregates versus
one where it is implemented on a large enough scale to do so, making the pathways influencing its impact more
complicated.
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dynamics and logistical and operational circumstances of a program as it expands.

2.4.5 Other programs

In some sense, the discussion in the preceding subsection speaks to the concept of external validity:
the degree to which impact evaluation estimates can be generalized to settings beyond which they
were drawn (even if they are internally valid in the sense of providing an unbiased or consistent
estimate of program impact within the context of the sample used). Another complication is that,
in the real world, for any given population there are typically a multitude of programs influencing
various channels of human welfare. Any of these could influence the outcome of interest for a
particular program and hence have implications for any impact evaluation of that program. For
instance, one might wish to evaluate the impact of a health program in a given population. However,
at the same time, an educational program might have been operating in that population that had
some influence on outcomes that the health program also sought to influence.

This really has two potential implications. First, it could undermine internal validity to the
extent that program participation rates for the educational program differ between participants
and non-participants in the health program. This is no different from the imbalance of background
characteristics problem that we have spent much of this chapter characterizing.

The other, more subtle, threat is to external validity. To fix ideas, suppose that participation
rates in the education program were the same between health program participants and non-
participants. Then, the presence of the education program does not present an obvious threat to
internal validity. However, to the degree that the education program influences the efficacy of the
health program, it could undermine external validity. For instance, it could be that the health
program causes a far more pronounced improvement to health in combination with the education
program. Impact evaluation based on a sample from the population receiving the health and
education programs might then lead to an exaggerated sense of the benefit of the health program
when applied in settings where the educational program is absent. Alternatively, it could be that
the education program does not enhance the effectiveness of the health program, but does in some
sense cushion non-participants in terms of the outcomes that they experience. If this were the case,
internally valid estimates of program impact might actually understate the value of the program
in populations where there was no educational program operating. Finally, there is always the
potential for a type of reverse threat to external validity: applying program impact estimates
drawn from a setting where the education program was not operating to circumstances were it
would be.

There is not necessarily a statistical solution to this threat to external validity. However, it
does suggest the need for interpretive caution when applying program impact estimates from one
setting to another. We form program impact estimates with samples drawn from populations
experiencing certain background circumstances, and hence those estimates are always conditional
on those background circumstances. This requires caution when applying the lessons drawn from
one set of circumstances to a new setting.

2.4.6 The Challenge of Defining the Counterfactual

Thus far in our discussion of characterizing the program impact challenge, we have generally as-
sumed that we can observe a counterfactual. Specifically, we have assumed that there is a sub-
population not participating in or exposed to a program, and that we can at a minimum observe
the experiences of a sample from that subpopulation. Suppose, however, that it is not evident
that such a “counterfactual subpopulation” exists. This complication would most obviously arise
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in the case of a program implemented throughout a society in a fashion that renders participation
involuntary.

Consider, for instance, a health communication program including television and radio com-
ponents in a small country within which the television and radio signals are received everywhere.
Strictly speaking, there will be no subpopulations residing in areas not exposed to these components
of the health communications program.

Sometimes this can be surmounted simply by refining the definition of program participation.
For instance, Hutchinson et al. (2006) consider the impact of a health communications program
in Bangladesh on various health and family planning outcomes. It proved essentially impossible
to isolate an area not exposed to the television and radio components of the program, and so the
authors redefined participation as recall of key messages from the campaign. This created a natural
“counterfactual subpopulation” (those who could not recall these messages) despite the fact that
the television and radio signals reached everywhere in the study area considered.

Another alternative, one which we will discuss briefly at the end of the manual, is to consider
evaluating the impact of the program through deeply “structural” modelling. This approach seeks
to estimate the parameters of a model that explicitly characterizes the decision making process for
individuals. If one can successfully estimate such a model, then they could in principle use the
fitted (i.e. with parameter estimates plugged in) model to simulate behavioral outcomes under var-
ious potential scenarios, including the presence and absence of a program. Note that this approach
could in theory be used to obtain inferences about the likely impact of programs that have no yet
been implemented (in which case there is in some sense no “factual subpopulation”). It is some-
times suggested that these models, by their purported capability of simulating the effects of policy
variation not observed in the data from which they were estimated, overcome the Lucas Critique,
although strictly speaking this is not exactly a correct application of that original critique.23

2.4.7 Levels of Implementation

Thus far we have usually, though not always, approached program participation as an individual
level choice. However, this is not always a useful framework for considering program participation.
For instance, some programs are implemented at essentially the community level. In wealthy
countries, one can think of initiatives such as policing strategies, water fluoridation, etc. In lower
income countries it is common to implement human welfare programs at the community level. For
instance, health care programs are often implemented at the community level: an entire community
might be considered participants if, for instance, a clinic is placed in that community. Just such a
possibility has been considered in numerous works (e.g. Angeles et al. 1998).

In general, the impact evaluation methodologies discussed in this manual are presented through
the framework of participation as an individual choice. However, the basic methods are typically
easily adapted to other levels of participation choice.

23Robert Lucas is an American Nobel Laureate macroeconomist (i.e. his work focuses on the branch of economics
concerned with understanding the movement of economy-wide aggregates such as prices, national incomes, employ-
ment, etc.). In Lucas (1976) he argued that the macroeconometric models of the time, estimated under historical data
taken from eras when one or another policy regime held, were not useful for simulating the effects of new regimes.
The reason is that the estimated parameters of those models were not structural (in these sense of being policy-
invariant). This is referred to as the Lucas Critique. Though the original critique was quite a focused statement
about a particular problem, the Lucas Critique is often invoked for the more general circumstances of using fitted
models to simulate the effect of variation not observed in the estimating sample.



Chapter 3

Randomization

In this chapter, we discuss what some would regard as the most convincing response to the basic
identification challenge of program impact evaluation: an experiment whereby program participa-
tion is somehow randomized. Indeed, experiments are often referred to as the “Gold Standard”
in impact evaluation methodology. To others, they fall so short of their promise, in practice and
even in some respects in principle, that they are something of a “Pyrite” standard.1 In this chap-
ter we will outline the basic requirements for a successful experiment, get a feel for the kind of
experiment-based evaluations that have been done and then explore the debate over this approach.

3.1 Randomization: The Basics

We have now seen that the challenge in evaluating program impact with data drawn from uncon-
trolled real world circumstances is that program participation may not be randomly determined
but instead a conscious, purposeful choice made by individuals. Their participation decision would
most likely depend at least in part on their characteristics, both observed and unobserved. These
characteristics would thus help to “sort” individuals into participants and non-participants. As a
result, participants and non-participants would be different types of individuals.

The most straightforward estimators of program impact (e.g. comparison of average outcomes
between participants and non-participants) may then fail to provide an unbiased estimate of the
causal effect of the program on outcomes. The basic problem is very simple. Because of non-
random assignment to the program, there may be systematic differences in the characteristics of
participants and non-participants. In other words, these two groups differ by more than just the
experience of program participation. We then cannot tell whether any differences in outcomes
between them are driven by the experience of being in the program or by their other differences in
characteristics.

An obvious potential solution to this identification challenge is an evaluation design under which
program participation is somehow randomly determined. If agents were randomly assigned, there
would be no basis for systematic differences between participants and non-participants beyond the
experience of participation itself. In other words, while there may be idiosyncratic differences in
characteristics between any particular participant and non-participant, these will tend to cancel
out on average with the result that the mean characteristics (observed and unobserved) of the two
groups should be the same. Any differences between the two groups can then be ascribed to their
differences in terms of the experience of program participation. As we will see, this method lends
itself particularly to estimating measures of average program impact.

1For the metallurgically disinclined, Pyrite, or FeS2, is also known as “Fool’s Gold”.

39
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We define this approach to program impact evaluation as an “experiment”. The definition of
an experiment can be a bit unclear. In many discussions of program impact evaluation, it refers
to a purposefully crafted social experiment under which participation in the experiment and the
randomly determined program participation assignment of participants in the experiment are per
the design of an evaluator for the purpose of evaluating the impact of that program. Under this
conceptualization, they are often referred to by the term randomized control trials (or RCTs,
in short). This is the definition we had in mind in introducing this chapter of the manual and it
represents the ideal around which the discussions in the chapter revolve.

We refer to the samples generated by successful RCTs as experimental. The cornerstone of
our definition of an experimental sample is the complete randomization of program participation
among the units of observation (typically individuals) within that sample. We refer to samples in
which program participation is not completely randomized as non-experimental. In no sense are
our definitions of experimental or non-experimental samples universally accepted or uncontestable.
They do not need to be: they are simply convenient for sorting out issues in the context of the
present discussion.

One can think of a somewhat broader and more inclusive definition of an experiment as an
instance where there is some mechanism (purposefully introduced by evaluators or naturally arising
by accident or happenstance and hence unrelated to the goal of conducting a program impact
evaluation) that randomizes (wholly or partially) program participation and is completely external
to the individuals for whom program impact is of interest. This broader definition includes what
are often referred to as natural experiments. Natural experiments do not require purposeful
design by evaluators, but can instead arise by happenstance from the natural course of events.
They are experiments offered by the messy laboratory of the human experience: instances where
the real world provides some mechanism beyond the individual’s control that may have introduced
a random element to their program participation decision.2

Though this chapter was motivated by the more restrictive definition of experiment reflected
particularly by RCTs, we do discuss a few natural experiments within it. Natural experiments do
have in common with RCTs that they involve some external (to the individual) source of random
variation in program participation. There is thus value in assessing the credibility of a natural
experiment in terms of the criteria by which RCTs are judged. Impact evaluations using data
from natural experiments tend to utilize quasi-experimental estimators. These will be defined more
precisely later in the chapter, but for present purposes they are estimators of program impact that
seek some sort of random channel of program participation in data that is non-experimental (per
our definition of experimental and non-experimental samples). The quasi-experimental estimator of
program impact typically applied to data from natural experiments does however require a random
channel of variation in program participation that is external to the individual. Natural experiments
can thus be thought of as defining the borderlands between RCTs (for which the identification of
causal program impact relies intrinsically on the complete randomization of program participation
in a fashion external to the individual and hence reflects the ideal of biomedical trials as applied to
program impact evaluation) and other quasi-experimental methods which do not rely on random
variation in program participation external to the individual.

We generally do not describe the results of a successful natural experiment as an experimental
sample, because natural experiments typically yield partial randomization of program participation.

2That said, the term natural experiment has been utilized in different contexts, leading to alternative operational
meanings. Sometimes the term simply suggests the presence of a naturally arising control group of non-participants,
but not necessarily randomization of participation. Conniffe (2000) adds the requirement of observing the non-
randomly assigned program participants and non-participant controls both before and after the initiation of the
program. Others have adopted still more inclusive or exclusive definitions.
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In such cases we would classify their fruits as non-experimental samples. That said, the sample from
a natural experiment that actually generated complete randomization of program participation (a
rare bird but not unheard of) would properly be considered experimental. By this logic, an RCT
that is unsuccessful, particularly in the sense of achieving less than full randomization of program
participation, would yield a non-experimental sample.

We tend to retain the language of the last chapter and refer to those randomly selected to
participate in the program as program participants and those randomly selected not to participate
as program non-participants. In some works, these two groups are referred to as the treatment and
control groups (an appeal to the metaphor of the clinical trial) or the experimental and control
groups (which hints at the laboratory tradition of randomized biomedical experiments). We stick
to the generally adhered to convention of Chapter 2 for the sake of consistency.

As Manski (1996) points out, the RCT approach to evaluation has a legacy that extends back
at least to Fisher (1935). To quote Manski’s summary of Fisher’s framework:

“Let random samples of persons be drawn and formed into treatment groups. Let
all members of a treatment group be assigned the same treatment and suppose that
each subject complies with the assigned treatment. Then the distribution of outcomes
experienced by the members of a treatment group should be the same (up to a ran-
dom sampling error) as would be observed under a program in which the treatment in
question is received by all members of the population”(p. 710)

Despite their rather long pedigree, RCTs are an approach that seems to come in and out of fashion
in various disciplines, and often when its popularity is on the rise it is discussed in terms almost
suggesting a new innovation. Notice as well the use of the term treatment, which in this context is
essentially synonymous with participation.

Manski (1996) goes on to summarize the assumptions that lie behind the RCT approach to
program evaluation (paraphrasing Manski 1996, p. 711 closely):

1. Participants in the experiment are randomly selected from the population of interest and
randomly assigned to their program participation status;

2. All participants in the trial comply with the program participation status to which they are
assigned;

3. The experiment lasts long enough to replicate the program under consideration and to influ-
ence outcomes;

4. There are no “social interactions that may make a full-scale program inherently different from
a smaller scale intervention” (p. 711).

Notice that assumption 4 in certain respects speaks to the partial versus general equilibrium effects
discussed in chapter 2. It could also be interpreted in light of the discussion of the complications
of scaling-up as well as that concerned with other, concurrently operating programs.

While the idea behind an RCT may seem straightforward, it can be difficult to grasp how
they are conducted in practice. We therefore begin by discussing a few studies that appealed in
one fashion or another to randomization designs. We take this approach because there is no real
“method” to RCTs beyond simply achieving the criteria in Manski (1996) in the sense that there are
well developed estimation procedures for the quasi-experimental estimators discussed in subsequent
chapters. The review will hopefully leave readers with a richer sense of the body of work involving
randomization.



42 CHAPTER 3. RANDOMIZATION

3.2 Experimental Evaluations: Some Specific Examples

3.2.1 John Snow and the Causes of Cholera

Despite the fact that RCTs motivate this chapter, we begin by discussing a study that arguably
relied on a natural experiment. We do so because it is the first and still one of the most important,
oft-cited attempts to assess a causal relationship by appealing to an experiment (broadly defined).
Indeed, it is often invoked by advocates of RCTs in building their case for their preferred approach
to program impact evaluation!

John Snow (1813-1858) is widely regarded as a pioneer of modern epidemiology. In that context
(he also had a broad record of achievement in areas such as anesthesia and medical hygiene), he
is perhaps best known for his work identifying the causes of cholera.3 Before Snow’s work, it was
widely believed that cholera was caused by a miasma. The term may seem silly at first glance
to modern readers, but in effect it often amounted to the notion that the disease was somehow
airborne (miasma theories typically appealed to the idea of “bad air”), which is not on its face
implausible. Today we know that many diseases spread by air, for instance in aerosol form. The
focus of the miasma theories was usually some sort of putrefaction of the air from rotting organic
material. In the context of its time, this theory was not without some evidentiary support. For
instance, it was noted that cholera was less common in elevated areas of London where the air
was believed to be better (this had been found by William Farr, the Statistical Superintendent of
the General Register Office, member of the Committee of Scientific Inquiries and, at least initially,
general supporter of the miasma theory of cholera infection).4

Snow believed that cholera infection was waterborne. Today, we know that cholera is indeed
spread via water infected with the bacterium V. cholerae. However, in Snow’s time this was a
very controversial idea and it had expensive implications: massive spending, both in terms of
public works and investment by private water companies, would be required to improve the water
supply. For instance, the cost of compliance had led to widespread non-compliance with London’s
Metropolitan Water Act of 1852, which aimed to improve water quality.

In an effort to gather evidence for his theory, Snow had carefully studied several cholera epi-
demics in mid-19th century London. One incident that he studied was an outbreak in a Northwest
Soho neighborhood that appeared centered roughly on a water pump at the corner of Broad and
Cambridge Streets. Snow produced a map (Figure 3.1) showing the cases at each point on each
street around the pump. The density of cases at each location is indicated by a dark bar pointing
in off the street from the location in question; among other contributions this is essentially an early
and still particularly clever histogram. This clearly demonstrates a concentration of cases around
the pump, but does not establish the pump as the cause of the outbreak. For instance, there were
other establishments and features of Broad Street that might have arguably been the cause (per-
haps by supplying a miasma). Some other feature of the area might have induced miasma. Indeed,
the most cynical view would be that the map only unequivocally demonstrated what was already
well-known: the location of the outbreak.

3See Deaton (1997), which helped to frame our thinking regarding Snow’s work. All quotes are Snow (1855),
by way of Deaton (1997). An extremely impressive resource regarding the life and work of Snow can be found
at a site created by Professor Ralph R. Frerichs and hosted by the U.C.L.A. Department of Epidemiology (URL:
http://www.ph.ucla.edu/epi/snow.html). We are grateful for the really nice clarifications of several key points pro-
vided by Prof. Frerichs’ site.

4Farr did concede, and early on, that there was a statistical association between cholera infection rates and water
source. However, he pointed out that water source was essentially confounded with elevation, and that the magnitude
of the estimated associations lent more weight to the elevation based explanation. Recent work (e.g. Bingham et al.
2004) calls Farr’s statistical conclusions in this regard into question.
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Realizing that a more convincing test of his theory was required, Snow exploited a fascinating
natural experiment. In that era, much of the water supplied to London households and establish-
ments was provided by private water companies. In some areas of the city a given company had a
near monopoly but in others their water coverage areas overlapped. This is illustrated in Figure 3.2,
which shows the coverage areas for the Lambeth and Southwark-Vauxhall water companies. In the
areas where their service delivery overlapped, the water lines of the two companies were completely
intertwined and Snow believed there to be more or less happenstance assignment of households to
Lambeth or Southwark-Vauxhall water. He argued essentially that a household’s water company
was the product of a gradual, idiosyncratic set of arrangements that had evolved over a long period
of time, typically extending much farther into the past than the residents had lived in that home,
and was hence for all intents and purposes independent of their characteristics. The overlap area
contained a diverse population and, as can be seen in Figure 3.2, was considerable in size.

London sewage was at the time dumped straight into the Thames river at London.5 Until the
mid-1840s, both companies drew their water from the Thames River downstream from London and
hence, crucially, downstream from the sewage flow from London into the river.

Then, in 1847, the Lambeth Company decided to move its intake upstream of London. The
move was completed in 1852. Thus by the early 1850s one company still provided water potentially

5Today London sewage is treated to the point where it is nearly potable and then returned to the Thames below
the Thames Barrier and hence well downstream of London.

Figure 3.1: John Snow’s Broad Street Map, image courtesy of Wikimedia Commons
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contaminated by London sewage while the other did not. When a cholera epidemic struck once again
in 1853-4, Snow used this unusual institutional circumstance to test his theory. Using household-
level data, he found that those households served by Southwark-Vauxhall had experienced 8.5
times the deaths per thousand from cholera as those served by Lambeth. Applying the language
and notation of chapter 2, provision of safe water to the household (as captured by receiving water
from Lambeth Company) was the program P and the outcome was cholera mortality Y .

Figure 3.3 illustrates the basic mechanism for the experiment (using Baker Street, to be the
home of a great detective four decades later, as a reference). Although London residents could
(and often did) drink water outside of their household, their households were important water
sources for them. The divergent intake points for the two companies sorted residents of the areas
where services overlapped into two categories of exposure to contaminated water. As Deaton (1997)
points out, the key to this experiment is that cholera is not directly caused by water intake but

Figure 3.2: John Snow’s Map of Lambeth and Southwark-Vauxhall Water Supply, retrieved from the
U.C.L.A. School of Public Health John Snow Web site at http://www.ph.ucla.edu/epi/snow.html
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rather by water contamination. The randomness of intake insured a source of random variation in
exposure to contaminated water. As he notes, simply examining exposure to impure water would
have been far less convincing: in practice drinking poor water would likely have been associated
with poverty and other forms of environmental contamination. The key here is that individuals
can get impure drinking water from all sorts of sources (outside of the home, impurities introduced
within the home, etc.) and the tendency to drink impure water, itself a behavioral choice, is likely
to be associated with other behavioral choices (such as other types of unsanitary conditions) that
might also influence the outcome of interest, cholera mortality. But variation in the type of water
company allowed Snow to identify one element of the variation in exposure to impure drinking
water that was random.

Figure 3.3: The Grand Experiment: Identification Mechanism

Snow’s findings did not persuade everyone, but they were sufficient to prompt greater enforce-
ment of the Metropolitan Water Act of 1852 (Southwark-Vauxhall was forced under the act to
move their water intake upstream of London in 1855). The other water companies were gradu-
ally forced to follow Lambeth’s lead. While many of the critics of Snow’s investigation relied on
somewhat specious reasoning, there were actually potentially serious flaws in this “experiment”.
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First, and most importantly, it is not clear that assignment of households to the two companies
was completely random. Technically, households could elect to change sources, and there is some
anecdotal evidence that there might have been reasons to do so (some reports suggest that Lambeth
water unsurprisingly tasted somewhat better). Second, Snow differentiated household water source
with a test of salinity, but there have been questions about the reliability of this test. This might
lead to mis-assignment of households in Snow’s data. Finally, Snow was unable to focus on the
areas where services overlapped, but instead had to examine the entire coverage areas of the two
companies. As we will see, some of these fundamental problems (e.g. potential non-compliance
with original experimental assignment, in this instance by switching companies) are not unique to
Snow’s experience.

At the time, Snow’s findings made somewhat more popular a multi-factorial (as opposed to
merely miasma-based) approach to cholera infection. However, there is an interesting postscript to
this story. One person that Snow’s work did eventually convince was William Farr, whose earlier
research had seemed to offer some support for the miasma theory. Farr would garner stronger
support for Snow’s theory with a similar study of an 1866 outbreak, where he found greatly elevated
mortality for the customers of the East London Waterworks Company which, it turns out, had been
cheating by continuing to draw water from the Old Ford Reservoir (which was contaminated by
sewage).

Notice that in critiquing Snow’s work we have appealed to some of the conditions for successful
randomization laid out by Manski (1996) (for instance by questioning whether households in the
study area really complied with their random “assignment” if some may have purposefully switched
water companies). It might seem somewhat pedantic to focus on those rigid conditions when the
randomization arises naturally. After all, Manski’s conditions might at first glance assumed to speak
most directly to purposeful social experimentation where randomization is explicitly introduced for
impact evaluation purposes (i.e. “if you want to perform a successful randomized trial, such and
such must happen”). However, the other way of looking at this is that Snow was effectively arguing
that water supply status was as if it had been randomly assigned. In other words, he was arguing
that his data were equivalent to what a purposeful experiment would have yielded. Viewed from
that standpoint, it is altogether reasonable that natural experiments be scrutinized within the same
framework as purposeful social experiments.

3.2.2 The RAND and Oregon Health Insurance Experiments

John Snow exploited an institutional circumstance beyond his control or design; it was a classic
“natural experiment”. There was no real possibility for a purposeful randomized design in his case.
Partly this reflected his resources (e.g. purposefully randomizing water sources in London would
have been prohibitively expensive) and the practice of his time and partly it reflected intrinsic
ethical constraints: a purposeful experiment where exposure to a potentially serious risk factor was
varied by design would not be ethical, in our age or his.6 However, in some circumstances explicit
and purposeful randomization (in other words, an RCT) is reasonable and logistically practical.

The largest and most elaborate (by a number of measures) explicitly randomized health policy
experiment of which we are aware was the RAND Health Insurance Study (exhaustively described
by Newhouse et al. (1993) and citations therein). The basic motivation of the study was the
desire to learn more about the price-responsiveness of health care demand (though the study had
many facets and yielded interesting insights far beyond this basic question). Learning more about
the price-responsiveness of health care demand could serve a number of purposes. First, it could

6This is not to suggest that unethical randomization has never been attempted; unfortunately there is a long and
dreadful history of such practices.



3.2. EXPERIMENTAL EVALUATIONS: SOME SPECIFIC EXAMPLES 47

help to assess one of the most popular hypotheses regarding the dramatic increases in health care
expenditures in America and other wealthy, industrialized nations in the post-WWII era, that these
increases have been fueled by the expansion of health insurance coverage to broad segments of the
populations of these nations. Health insurance coverage lowers the net price of care confronting
consumers, and the theory suggests that they respond to this effective drop in the price of formal
care by seeking more of it. However, the need to understand the price responsiveness of health
care demand extended (and still extends) beyond explaining an historical curiosity: the financial
implications and feasibility of various social insurance schemes designed to extend health insurance
coverage (such as Medicare, Medicaid, the Medicare Drug Benefit, the Affordable Care Act, etc.)
depend critically on the manner in which consumers will respond to the changes in the price of care
that such programs induce.

To assess the price sensitivity of health care demand, researchers had until the RAND Health
Insurance Experiment (and often since) to rely on non-randomized observational data containing
information regarding the insurance status and health care utilization (measured in a variety of
ways) of randomly drawn members of the population. The problem with such data is that health
insurance demand is not randomly assigned: individuals generally choose their insurance status.
For instance, in the United States they may have accepted employment involving some health
insurance benefits. They may also have taken steps (e.g. drawing down their net assets) that
rendered them eligible for some public insurance scheme. Finally, they may have been motivated to
seek insurance due to poor health or the expectation of health problems. The insured and uninsured
in such samples differ by all of these other factors and their determinants, making it difficult to
ascribe differences in health or health related behaviors between the two groups to insurance alone.
This makes it challenging to assess the causal impact of the price changes induced by insurance
on health care demand and health. For instance, if those with coverage in real world data are less
healthy than the typical individual, insured individuals would have been likely to have high health
care expenditures in any case (because they are less healthy), possibly leading to an overestimate
of the price sensitivity of health care demand.

The RAND experiment, which ran roughly and to varying degrees from 1971 to 1982, sought
to recover a clearer understanding of the effect of insurance on health care demand (or, in other
words, a clearer understanding of the price sensitivity of health care demand). Essentially, it
involved randomly assigning 2,000 families at several sites to various health insurance plans. These
plans were somewhat complex, but essentially varied mainly along two dimensions. First, their
co-insurance rate (the percentage of medical bills paid by the family) was set to 0 (free care), 25, 50
or 95. Second, the maximum dollar expenditure for a family in a 12 month period varied between
plans (5, 10 or 15 percent of family income). The various permutations led to roughly a dozen
plans.

An incredible amount of thought and effort went into insuring the randomization of insurance
status. For instance, the principal investigators calculated side payments for each family that
insured that they would be left no worse off (financially) by the experiment (otherwise a potential
confounder and disincentive to cooperate with the experiment). Nonetheless, the refusal rates
across plans still varied substantially (see table 3.1). This of course threatens to introduce exactly
the sort of biases that characterize non-experimental data. For instance, what if inherently less
healthy individuals (a status that researchers cannot perfectly observe) were more likely to refuse
more onerous plan assignments? Plan features would then become correlated with inherent health,
making it more difficult to estimate the causal effect of insurance features on health care utilization
or health.
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Table 3.1: Refusal Rates by Plan

Plan Refusal Rate (%)

Free 8

25 and 50% coinsurance 11

95 % coinsurance 25

Source: Newhouse et al. (1993)

Although Newhouse et al. (1993) argue forcefully (and, a reasonable person could conclude,
fairly convincingly) that the variable refusal rates do not contribute substantially to biased estimates
of the causal effect of health insurance status on health and health care demand, few (including,
we suspect, Newhouse et al.) would argue that constant refusal rates across plans would not
have been preferable. Thus, even with a carefully defined and conscientiously executed purposeful
randomized trial such as the RAND effort,7 one still sees that the basic challenge of defiance of
random assignment can present itself (in much the same manner that it was often the case that
London households could in fact change water companies).

Sidestepping this issue, it might seem that analysis could proceed simply by comparing mean
outcomes and behaviors across plans. However, there can be a benefit to more sophisticated
modelling. For instance, in some cases it can yield more precise estimates or a better fit to the
data. In practice, the RAND work became the motivation for fertile discussions8 about alternative
modelling strategies. The main focus of the debate was the appropriate method for modelling
health care expenditures, which typically exhibit a large mass at zero (reflecting the fact that in
many intervals most households might have zero expenditures) in any given sample.

We conclude with mention of a more recent health insurance experiment (involving some of the
same researchers as the RAND effort) in Oregon. In 2008, the Oregon Health Authority had funding
to insure an additional 10,000 individuals through the Oregon Health Plan Standard, a Medicaid
program for adults who are low-income, uninsured, “able-bodied” and not eligible for other public
insurance in Oregon (see http://www.nber.org/oregon/documents.html for a full description of the
Oregon Health Plan Standard and the design of the experiment). Unfortunately, nearly 90,000
expressed a desire to apply to enroll. The state decided to hold a lottery to determine who could
apply for enrollment across a list of the 70,000 or so who remained after pre-lottery screening
for likely eligibility. Interestingly, selection of an individual in the lottery meant that everyone in
that person’s entire household on the list was selected. An immediate implication of this is that
winning individuals were more likely to come from larger households since those households had
more individuals to sign up for the lottery. In the end, roughly 30,000 individuals were selected to
apply, less than a third of whom would eventually be enrolled. The low enrollment rate was a result
of low questionnaire return (applications were returned by around 60 percent of lottery winners)
and the eventually determined ineligibility of around half of submitted applications (most often for
income above the eligibility threshold). Data was then gathered from a variety of sources.

The “Oregon Experiment” experiment in some sense lies somewhere between John Snow’s
investigation of cholera in the Lambeth and Southwark-Vauxhall catchment areas and the RAND
health insurance experiment. In the Oregon case, there was an institutional reality beyond the

7Newhouse et al. 1993 is worth reading for anyone planning social experiments regardless of the focus area if for
no other reason than to see how much thought and effort is required for the design and execution of a seemingly
straightforward experiment.

8It was quite a lively debate. A few of the major contributions include Duan et al. (1983), Hay and Olsen (1984),
Duan et al. (1984) Maddala (1985), Duan et al. (1985) and, more recently, Dow and Norton (2003).
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study designers’ control (the limited number of slots in the Oregon Health Plan Standard) but they
responded with a design that purposefully and explicitly generated experimental variation from
that institutional opportunity.

Analyses using the Oregon such as Baicker et al. (2013) recognize that it was an imperfect
experiment. Not all lottery winners became enrollees, partly out of behavioral choice: some never
returned the enrollment questionnaire after winning the lottery. Thus, the Oregon Experiment
could be viewed as a failed RCT, though this description seems rather harsh in light of the realities
of what the researchers evaluating the program could and could not control. Within the taxonomy
of samples adopted earlier, the Oregon sample would be non-experimental.

3.2.3 PROGRESA

One of the most well-known RCTs in a lower- or middle-income nation, at least in recent years, was
the PROGRESA (Programa de Educacion, Salud y Alimentacion, subsequently renamed Oportu-
nidades) program in Mexico. The random assignment of PROGRESA participation serves as a
good example of the old adage that necessity is the mother of invention. PROGRESA is essentially
a program offering cash grants to women on the condition that their children attend school and
receive certain types of preventive health care (health education programs, nutritional supplements
and formal care visits). The idea of the program is to break the inter-generational transfer of
poverty in rural Mexico driven by the use of children as laborers at household enterprises (such as
farms), in the process curtailing their formal education.

At the time the program was launched (in 1998), it was not financially possible to extend it to all
of the villages (50,000) that would ideally receive it. Instead, policymakers selected 506 pilot com-
munities (in the states of Guerrero, Hidalgo, Michoacan, Puebla, Queretaro, San Luis Potosi and
Veracruz) and randomly assigned 320 to receive PROGRESA (see Duflo (2003), Duflo and Kremer
(2003), Gertler and Boyce (2001), Buddelmeyer and Skoufias (2003) and many other authors for
descriptions of PROGRESA’s implementation). Baseline and follow-up data were collected for ran-
dom samples of women and their children in 320 communities that participated in PROGRESA and
the 186 randomly selected not to participate. This data became the basis of numerous evaluation
studies that exploited the random assignment of communities to PROGRESA.

According to Duflo (2003) and Duflo and Kremer (2003), part of the reason for going ahead
with the limited pilot implementation was to insure the program’s political survival. Presumably,
it is harder to cancel a successful program. PROGRESA’s architects may have felt that the sort
of randomization that they imposed would yield evidence of success (provided the program proved
successful) that would have a fairly high degree of credibility. If that was the case, the strategy
would seem to have paid off: the program has been widely implemented in rural Mexico, and an
urban version has been introduced.

PROGRESA has achieved a tremendous degree of visibility, and attracted a great deal of
research attention. Obviously, researchers have exploited the randomization design to assess the
impact of the program itself (see, for example, Gertler and Boyce (2001), Skoufias and McClafferty
(2001), Behrman et al. (2000, 2001), Schultz (2000a, b, c, 2001), Gertler (2000), Behrman and
Hoddinott (2000), Hoddinott et al. (2000), Parker and Skoufias (2000), Teruel and Davis (2000),
etc.). The evidence has generally shown that PROGRESA had an impressive effect on many of the
human welfare outcomes it was designed to target. Interestingly, some researchers (e.g. Todd and
Wolpin (2006), Buddelmeyer and Skoufias (2003)) have even cleverly exploited the randomization
of PROGRESA to gather evidence in favor of certain non-experimental estimators.

Designs such as PROGRESA are not entirely immune from the possibility of experimental non-
compliance. For instance, while communities per se cannot defy their assignment, in principle their
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members could, simply by moving. This is referred to as endogenous migration.

3.2.4 The Work and Iron Status Evaluation (WISE)

Some RCTs in lower income societies have rather ambitiously involved purposeful randomization
of participation at the individual level. In doing so they have sought not only to uncover important
potential program impacts, but also to unravel some important behavioral pathways between human
welfare outcomes. For instance, researchers have long sought to understand the link between
health and economic prosperity. Many studies note an apparent correlation between the two.
Unfortunately, the true causal effect of health on economic prosperity can be very hard to assess
using real world non-experimental observational data. To begin with, there is a certain obvious
potential for circularity to the relationship. It is clear that there are reasons that healthier people
might be wealthier. Better health makes people more productive workers who lose less work time
to illness. There are, however, equally plausible behavioral channels by which one might imagine
that economic well-being influences health. For instance, it seems straightforward that wealthier
people might, other things being equal, be more likely and able to make certain types of human
capital investments (health care visits, better nutrition, etc.) that might improve health. Teasing
out the part of the correlation between health and wealth that reflects the causal effect of health
on wealth has proven to be a difficult empirical challenge.

The Work and Iron Status Evaluation (WISE) seeks to assess the effect of health on economic
well-being using a randomization design. The particular channel of health on which it focuses is
iron deficiency. Iron deficiency is a common health challenge in contemporary lower income soci-
eties. Additionally, there is “a very large literature in health, nutrition and biochemistry which
provides a solid scientific foundation for understanding the biomedical consequences of iron defi-
ciency”(Thomas et al. (2003), who go on to suggest Haas and Brownie (2001) for a thorough review
of this literature). Thomas et al. (2003) point out that iron plays a central role in oxidative energy.
This means that iron deficiency can translate into greater vulnerability to disease and fatigue. It
can also impair childhood development, raise the likelihood of infant and child mortality, and reduce
maximum aerobic capacity (Thomas et al. (2003)).

Iron deficiency is thus an ideal condition on which to focus because it is widespread (and thus
has broad relevance) and also has substantial and well documented implications for health. WISE
was an evaluation in the Purworejo district of Java, Indonesia. It involved 4,000 households, each
of which were interviewed every four months for three years, beginning in 2002. The first two waves
of interviews constituted baseline observations. Following the baseline interviews, households were
randomly assigned to two groups: program participants and non-participants (where the “program”
was receiving iron supplementation). All household members in the participant group received
iron supplements on a weekly basis for a year. (The designers of the study anticipated that all
members of the participant group would not be iron deficient by the end of the year, with most
attaining that status in far less time.) The members of the non-participant group were not provided
with iron supplementation. The surveys collected information about wealth and consumption,
work, participation in community activities, health and cognitive status. Preliminary evidence
(see Thomas et al. (2003)) suggests that those receiving the iron supplements were healthier and
economically better off, though these initial effects seem to have been stronger for men than women.

3.2.5 Poverty Action Lab Studies

Beyond individual, stand-alone RCTs in lower income societies such as WISE and the PROGRESA
work, MIT’s Abdul Lateef Jameel Poverty Action Lab (http://www.povertyactionlab.org/) has
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become a very active center for research involving randomized trials with a focus on development
questions. The contributions of this institution are truly too numerous to do any sort of adequate
justice to them (indeed, a thorough review of the Lab’s achievements could be the subject of several
manuals).9 For the most part, the Lab’s studies have involved purposeful RCTs, as opposed to
natural experiments.

We list a few randomly selected early and recent contributions, simply to provide the roughest
sort of feel for the work of the Lab:

• Miguel and Kremer (2004) consider the impact of a de-worming program by randomizing the
order in which schools received it;

• Banerjee et al. (2007) examine the effect of a remedial education program that involved
introducing young women from the community to provide remedial education to children in
grades 2-4 who had not reached grade 1 levels of achievement. They did so by randomly
introducing the program to government schools;

• Duflo et al. (2012) randomize school curriculums in Kenya to examine their implications for
sexually transmitted disease infection and early fertility;

• Mobarak and Rosenzweig (2013) consider the effect of informal rainfall insurance on the
demand for formal rainfall insurance and risk taking in India by randomizing villages to
receive a marketing visit for a new rainfall insurance scheme;

• Ashraf et al. (2013) examine the effect of incentives (financial and non-financial) on the
performance of those recruited to promote HIV prevention and sell condoms.

While these examples center on educational and health interventions, the Lab’s studies have con-
sidered a wide variety of interventions and other social phenomenon. Further, it has not restricted
its attention to policy questions in lower income societies. To cite one example, Bertrand and Mul-
lainathan (2004) examine potential racism in hiring by randomizing names on resumes. The Lab
has also been a focal point for methodological work exploring the possibilities of and limitations to
randomized trials.

A general observation that should be made about the Lab’s RCTs is that they tend to evaluate
isolated theories of change (e.g. does school curriculum affect sexually transmitted disease and
fertility?) or perhaps the interaction of a few, well-defined and distinguished theories of change.
By contrast, much of the programming by developing country governments, as well as bi- (e.g.
USAID, DFID, AUSAID, etc.) and multi- (e.g. the World Bank, Asian Development Bank, etc.)
lateral donors is integrated in the sense that the overall program involve many separate areas
of programming, each of which can be motivated by a distinct theory of change, delivered as a
package in the hope that they will collectively influence outcomes, often per a (rather elaborate)
results framework.

In principle an integrated program could be subject to an RCT through the deliberate ran-
domization of package components across experimental subjects. In theory this could allow for
identification of the average impact of different components, as well as exploration of how those
impacts might depend on the specific package of other components. In practice, this has proven
hard to do. For instance, an integrated program involving a suite of 4 components could potentially
lead to 15 possible combinations of those components across which participation would need to be
randomized, leading to 16 subsamples in the evaluation sample (one must be added to allow for a

9The Lab’s studies are given so little real estate in this chapter because it has been so prolific that anything other
than a brief overview would take over the chapter.
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pure control with no exposure to program components whatsoever). As the number of components
grow, evaluations could quickly grow very expensive. Nonetheless, donors could still learn much of
value by evaluating the impact of the various components separately.

3.2.6 Methodological Benchmark Studies

Next we consider two important experiments in wealthy countries that have served as platforms for
much methodological discussion of RCTs and impact evaluation. The National Supported Work
Demonstration (NSW) is an important randomized trial, in part because data from it has been fre-
quently utilized by researchers in the various methodological debates surrounding program impact
evaluation. The NSW10 provided temporary employment in order to give more marginal workers
work experience and counseling. A sample of qualified applicants was admitted into the NSW
randomly (and then received a job for 9 to 18 months), while the rest were left to provide insight
on outcomes under non-participation. The program was run in the mid-1970s by the Manpower
Demonstration Research Corporation at 10 sites. Qualified applicants included “AFDC women,
ex-drug addicts, ex-criminal offenders, and high school dropouts”(LaLonde (1986)). The sample
used by many researchers consists of 6,616 individuals (including treatment and control groups) and
includes data on earnings and demographic characteristics at the baseline and every nine months
thereafter.

Although there was by design some sample attrition, there was also unintended attrition that
might serve to undermine impact evaluation. For instance, if more motivated people were more
likely to participate in follow-up interviews, then the sample might become skewed toward those
types of people (as opposed to the distribution of motivation among the overall population eligible
for the program). Suppose that more motivated people are more likely to have positive labor market
experiences, regardless of program participation. It could be that this would lead to a narrowing
of the estimated program impact (because the sample becomes dominated by people who might
have done comparatively well in either case), thus causing one to underestimate the true impact
of the program when applied to a wider population. Of course, selective attrition might introduce
other sorts of complications. The point is that this might lead to different inferences than might
have been made had there been no selective attrition, in that sense undermining the randomization
somewhat.

As a final note, consider what sort of treatment effect (of those introduced earlier in the
manuscript) might be most readily estimated with the sample generated by this design. The
first effect that we introduced was the average treatment effect:

E(Y 1 − Y 0)

The average treatment effect is the impact of the program on the typical or average person in the
general population. In other words, it tells us the effect of the program on the randomly drawn
person from a fairly broadly defined population (such as all Americans). The second was the average
effect of treatment on the treated:

E(Y 1 − Y 0|P = 1)

This is the impact of the program for those actually exposed to it.
The NSW design yielded information on qualified applicants (some of whom were selected to

participate in the program and a group refused the opportunity to enroll). It does not contain
information about other types of individuals, such as those that might not have qualified for the
program. It would thus seem reasonable to suggest that this data is most amenable to estimation

10This description draws heavily on LaLonde (1986).
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of something akin to the average effect of treatment on the treated. Neither those enrolled in the
program or the qualified applicants randomly refused enrollment into the program form a legitimate
control for those enrolled. But neither group would seem particularly representative of the wider
populace. Rather, they appear to be reasonably representative of those who would most likely
receive such training (we offer the qualifier “reasonably” because some applicants might not have
ultimately enrolled, even if their application was successful).

The National Job Training Partnership Act (JTPA) study (NJS) was designed to evaluate
job training programs operating under the aegis of the JTPA. The JTPA is the most significant
federal job training program in the U.S. It resembles both earlier federal training efforts and other
job training programs throughout the world (Heckman et al. (1996)11). In the NJS, a group of
accepted applicants were randomly assigned to participant and non-participant groups (with the
later excluded from JTPA programs for 18 months). The study’s designers also collected a sample
of eligible individuals who elected not to enroll (on their own accord) as a non-experimental control.
This setup thus implies randomization of participation among those who sought to participate. It
should thus be clear that this is another reasonably good setup for examining the average effect of
treatment on the treated (because the randomization is across those who wished to enroll in the
program, as opposed to the general population), which is the program effect that Heckman and his
colleagues did in fact pursue in their own work. The NJS sample was heavily utilized by Heckman
and his colleagues (Heckman et al. (1996), Heckman et al. (1997a, b), Smith and Todd (2001)) in
their work assessing propensity score matching estimators (which will be discussed in subsequent
chapters).

The NSW and JTPA studies may have been subject to another potential complication for ran-
domized trials. In both cases, some qualified applicants were randomly selected not to participate.
What is to prevent them from trying to enroll in some other related program designed to achieve
the same outcome? This is not just an academic possibility. Within any given society at any
point in time, there are often many programs operating concurrently and independently to target
the same human welfare outcomes for the same population subgroups. For instance, what if the
program non-participants in either of these trials decided to enroll in some other training program,
such as a state program? In that case we would not be able to characterize the control group as a
whole as receiving no treatment. This could, for instance, lead researchers to under-estimate the
effect of the program, since the outcomes experienced by some program non-participants may have
been improved by enrolling in alternative programs.

Simply controlling for this possibility in a multiple regression framework might not yield the
same estimates that true randomization would have provided. The problem is that non-random
assignment to alternative programs within the non-participant group makes it impossible to isolate
a subsample of truly randomized controls that did not experience any program intervention of any
kind. Put differently, since enrollment by program non-participants in alternative programs is likely
non-random, the non-participant group becomes sorted systematically by observed and unobserved
characteristics into those enrolled in alternative programs and those not enrolled in any program.
This non-random sorting means that the remaining group not enrolled in any program no longer
has the same average characteristics as the original randomly determined program non-participant
group. For exactly this reason, simply dropping those enrolled in an alternative program also would
not restore the circumstances of a randomized trial.

11See as well Orr et al. (1995) for a thorough description of the program.
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3.2.7 Negative Income Tax Experiments

The negative income tax is an idea first introduced by the American economist Milton Friedman.
It can be regarded as a way of guaranteeing a minimum income. Negative income tax proposals
typically involve some combination of a flat tax and an income transfer from the government. For
instance, the government could impose a 30% flat tax on income, but offer a $30,000 transfer
payment. An individual making nothing by their own efforts would then have an annual income of
$0-.3*$0+$30,000=$30,000. An individual earning $50,000 would, on the other hand, end up with
a net income of $50,000 - .3*$50,000 +30,000=$65,000. Finally, an individual making $150,000 per
year would have a net after tax income of $135,000. It thus effectively amounts to a progressive
tax, though in a very different manner than the income tax schemes generally in place in the
contemporary wealthy, industrialized world.12 The negative income tax is thought by proponents
to have the advantage of eliminating the welfare trap. Critics claim that it creates a social safety
valve that might allow employers in lower-skilled industries to pay workers far less. More generally,
labor economists and others often feared that this approach might create disincentives to work.

To evaluate the negative income tax and its implications for behavior and public revenues,
a number of field experiments were conducted. For instance, in 1968 the Office of Economic
Opportunity, a central policy analysis body for the Johnson Administration, selected several sites
in New Jersey to conduct such experiments. The experiment was overseen by the University
of Wisconsin’s Institute for Research on Poverty, with Mathematica Inc. handling actual field
operations and data collection. Participants were randomly assigned to various permutations of
the negative income tax (based on different tax rates and defined transfers). The control group was
not assigned any transfer payment. Data was collected on the characteristics and behavior (e.g.
labor market participation) of each. As an important footnote to history, this was to our knowledge
the first social policy experiment in the U.S.

Unfortunately, the implementers of this experiment ran into a number of practical problems.
Chief among them was that realistic combinations of transfers and flat tax rates made it very
difficult to attract welfare recipients to the experiment, since they might be left financially worse off
by their participation in the experiment. Any combination that might have removed this problem
would likely have implied program parameters that, were they implemented on a broader scale,
would make the program essentially infeasible.

We thus see a common pitfall of randomized trials: non-random refusal to participate in the
experiment. The difficulties that the implementers of the New Jersey experiment experienced
highlight another point: a relatively conceptually straightforward policy might prove very difficult
to actually implement in the context of a actual randomized trial.

3.2.8 Unintended Random Experiments

We end our tour of experimental designs where we began: with the possibility that, on occasion,
the messy laboratory of the human experience can provide randomization of program participation.
While the potential range of sources of randomization for natural experiments may be limited only
by the imagination (or the persuasive powers of the researcher attempting to argue that natural
randomization design has occurred!), we discuss two examples (beyond John Snow’s experience) to
provide some notion of how such designs might arise naturally.

12Current income tax systems usually try to deliver progressivity by raising marginal tax rates with income.
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Lotteries

Sometimes randomization can emerge due to lotteries that are employed to ration scarce resources
or more equitably divide social burdens. A lottery determined eligibility for conscription into the
U.S. military during World War II and parts of the Vietnam War. The exact details of the lottery
evolved over time, but the essential scheme often involved prioritizing young men for conscription
based on their birth date, making some far more likely to be inducted than others. For instance, in
the 1969 Vietnam War-era lottery, each birth date was written on a slip of paper which was then
placed in a plastic capsule which was in turn deposited in a bowl. The balls were then randomly
withdrawn (Figure 3.4 shows Representative Alexander Pirnie drawing the first number in the 1969
draft), with the first birthdate date drawn assigned the number ‘1’, the second ‘2’ and so on until
the 365th and final date was drawn and assigned ‘365’. Table 3.2 provides a sampling of results
from the 1969 and 1970 lotteries. The columns represent birth months and days and their draws
from the 1969 and 1970 lotteries. For instance, the birth date March 7 drew 122 and 141 in the
1969 and 1970 lotteries, respectively, while the numbers for June 4 were 20 and 42.13 Those with
birth dates assigned a lower number were drafted first (in practice those drafted based on the 1969
lottery had birth dates assigned numbers of 195 or less).

Figure 3.4: The 1969 Draft Lottery Draw, courtesy of Wikimedia Commons

Ideally, a draft lottery would completely randomize participation in the military. This would
imply that veterans and non-veterans would be the same on average, opening the door to the
possible evaluation of the effect of military service (at least in that era) on many human welfare
outcomes. Under this conceptualization, military service is the program participation experience
to be evaluated.

Unfortunately, the draft lottery did not accomplish this. First, the lottery itself may have
been slightly botched. For instance, it was quickly noted that November and December birth
dates had overwhelmingly been assigned lower numbers in the 1969 lottery (only five birth dates in
December were assigned numbers above 195, the effective cut-off number for conscription). It has
been suggested that this may have resulted from the capsules not being sufficiently mixed in the
bowl from which they were drawn. This could potentially introduce some complications for impact
evaluation purposes since some human welfare outcomes are seasonal (to cite just one example that

13The draft numbers were retrieved from http://www.math.uah.edu/stat/data/Draft.html



56 CHAPTER 3. RANDOMIZATION

the authors have recently encountered, schizophrenia appears to be more common among those
born in colder months).

However, there were other complications. In practice there were a number of possible ways to
avoid conscription, both before the lottery and even in the face of an adverse draw from the lottery.
Some young men were likely in a better position to exploit those loopholes than others. These
differences likely undermined the balance of characteristics between the drafted and un-drafted
that one would hope true randomization might provide.

Even more importantly, however, military service status did not depend simply on the draft.
Some (in fact, many) young men with a “better”lottery draw nonetheless enlisted voluntarily (even
at the height of the unpopularity of the Vietnam war). During the Vietnam war the majority of
the troops serving in country, and the majority of the casualties, were volunteers.

Table 3.2: Draft Lottery Numbers

M D 1969 1970 M D 1969 1970

3 7 122 141 9 11 158 288
8 22 339 250 11 1 19 243
4 18 90 138 6 4 20 42
7 12 15 257 7 13 42 349
5 9 197 357 12 30 3 192

What should an empirical researcher do with the volunteers? Simply ignoring them leaves out
an important subgroup for gaining a comprehensive sense of the average impact of military service.
However, if one includes them, what cohort could serve as a legitimate control? This example
illustrates the fact that randomization mechanisms that seem straightforward at first glance can
become far less appealing on closer examination of the institutional and social circumstances within
which they were implemented.

Notice that there is somewhat of an analogy to the circumstances of the Oregon Health Insurance
Experiment (which could just as easily have fit into the present discussion of lotteries). A lottery
determined who would be allowed to apply for insurance, but behavioral choices then influenced
the actual application decision among those offered the opportunity to apply. As we will see in the
chapter on instrumental variables, it is possible to exploit the random element of the participation
process for evaluation purposes, even if non-random factors also drove participation.

There are other interesting naturally occurring (as opposed to occurring by the explicit design
of researchers) lotteries. For instance, in the U.S. magnet and other school sometimes accept
students by lottery. Cullen et al. (2006) take advantage of just such a mechanism, as did Angrist
et al. (2002) (though the latter considered a school voucher program in Columbia, where vouchers
were distributed by lottery). Whenever one appeals to such sources of randomization, it is very
important to carefully establish in a convincing fashion that the lottery did in fact represent an
allocation mechanism that yields a truly random sample. Duflo (2003) discusses lotteries as a
source of randomization in general, in more detail.

Happenstance Randomization

Policy implementation is certainly an imperfect process, more so in some cases than others. In
certain instances, it may be reasonable to assume that individuals or other units of observation
(families, communities, etc.) participated or did not participate in a program in a more or less
random fashion due to accidents, incompetence or a haphazard or inconsistent adherence to program
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assignment rules.
A novel application that more or less appeals to randomization by happenstance is Miller (2010).

Miller’s goal was to evaluate the impact of PROFAMILIA, one of the world’s largest and most
established family planning programs, on fertility and other human welfare outcomes in Colombia.
Miller notes the difficulty in parsing out the true effect of family planning programs on fertility and
other outcomes given non-random program placement. His approach to this problem is particularly
notable for a novel appeal to an unusual source of exogenous program variation: arbitrary program
assignment by PROFAMILIA administrators. For instance, Dr. Gonzalo Echeverry, one of the
PROFAMILIA administrators during its main period of expansion (the 1960s and 1970s) related
how he often decided to introduce the program into an urban community based on a chance meeting
with a fellow physician “at cafes or bus stops”(Miller 2010 p. 714).

One must be very careful when assuming that such circumstances actually result in random
assignment to a program. For instance, suppose that, in some fictional country X, we learned
that there had been a health program that was to be assigned at the community level based on a
systematic allocation rule that reflected the characteristics of the communities in that country. This
might happen if policymakers have only limited resources and thus had to prioritize in terms of the
communities receiving the program. To assess the impact of the program with observational data,
we as researchers would normally need to observe all of the factors that guided the allocation rule
and the health outcome. Otherwise the communities exposed to the program would systematically
differ from those not exposed by more than just the experience of the program (namely, they would
differ in terms of their average values for the characteristics that shaped the allocation rule) and we
would not be able to ascribe with any degree of confidence differences in health outcomes between
them to the program.14

Now imagine that we as researchers learned that the program’s administrators had in practice
ignored this rule and simply extended the program to communities as local leaders requested it, at
least until they ran out of resources to extend the program any more widely. Could we necessarily
conclude that program assignment was therefore random? To answer this question, one must
ask whether this haphazard assignment mechanism is likely to lead to systematic (i.e. average)
differences in the communities that receive the program. It is already obvious that they differ in
terms of one crucial feature: whether their leaders asked for the program. It seems straightforward
that leaders who asked for the program are more likely to be sensitive to the health needs of
their constituents and/or operate in an institutional setting (cultural, political, etc.) that is more
sensitive to health needs, demands a leadership that is more sensitive to the health needs of the
populace, etc. However, these traits are likely to influence health in other ways (beyond their
impact through the program). These largely unobserved community characteristics would likely
contaminate any estimates of the programs impact.

Miller’s (2010) argument regarding the arbitrary nature of the expansion of PROFAMILIA
is compelling because he provides comprehensive evidence that the program was indeed more or
less randomly assigned. For instance, he finds no statistical association between the program
and the fertility or socioeconomic status of women just beyond their reproductive years when
the program was introduced. If the introduction of the program did in fact vary systematically
with community-level observed and unobserved characteristics that influence fertility, program
exposure should then serve as a proxy for these factors. We would thus anticipate a significant
(though spurious) statistical relationship between program exposure and the socioeconomic status

14In a multiple regression context, we could in principle regress health outcomes on a variable indicating program
exposure and a set of controls for community characteristics. However, unless that set of controls included all of the
variables that influence health and program allocation, our estimate of the effect of the program would be tainted by
classic omitted variable bias.
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and fertility of women just beyond reproductive years when it was introduced because the program
variable would be picking up other community-level factors that influence these outcomes for these
women. Randomization due to haphazard implementation should not be taken at face value. In
that sense Miller (2010) sets a high and appropriate standard of proof when appealing to such a
source of randomization.

Other Studies

In no sense has this been intended to serve as an exhaustive review of the randomization designs
to date. Indeed, it misses entire institutions that have made major contributions (e.g. the efforts
under the aegis of the International Initiative for Impact Evaluation15). Nor should the studies
included be regarded as anything other than what they are: a rather random selection of important
randomization driven evaluations. Nonetheless, this list should give the reader some sense of the
range of studies performed, as well as common pitfalls encountered in the pursuit of randomization
designs.

3.3 The Case for Randomization

3.3.1 Quasi-Experimental Estimators

Before proceeding, we must define quasi-experimental estimators. Quasi-experimental esti-
mators obtain program impact estimates from non-experimental samples, for which program par-
ticipation is not fully randomized. Broadly speaking, quasi-experimental estimators can be con-
veniently divided into two classes. First, there are quasi-experimental estimators that rely on
non-experimental data that includes some mechanism generating random variation in program
participation that is incomplete but external to the individuals for whom program impact is of
interest. The most obvious example of this vein of quasi-experimental estimation is what is called
instrumental variables. The other class requires random variation in program participation not
external to the individual or their program participation decision. Examples might include within
and matching estimators. All of these will be the subject of subsequent chapters.

They are called ‘quasi’-experimental because they rely on less than complete randomization of
program participation. Appealing to a quasi-experimental estimator generally requires assump-
tions. The logic is roughly as follows:

If such and such is true of the real world processes that gave rise to our non-experimental
sample, then the estimates of program impact generated by this quasi-experimental esti-
mator provide the causal impact of program participation on outcomes of interest.

Along with assumptions, quasi-experimental estimators typically involve data requirements (i.e.
certain information regarding the sample) that vary in stringency across quasi-experimental esti-
mators.

Quasi-experimental estimators are thus the most obvious alternative to the full randomization
present in experimental samples for identifying program impact. In some sense quasi-experimental
estimators can be thought of as the competing approach to designs that generate experimental
samples (per our earlier definition). Since most experimental samples emerge from RCTs, this is
for all intents and purposes essentially the same as saying that quasi-experimental estimators are
the competing approach to RCTs.

15See http://www.3ieimpact.org/ .
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Experimental samples can support experimental estimates of program impact. To capture
the causal impact of program participation on an outcome, experimental estimates rely on the
complete randomization of program participation.

3.3.2 LaLonde’s Critique

We focus on just one particular contribution to the case for randomization, LaLonde (1986), largely
because it was an important catalyst for the modern advocacy of RCTs. LaLonde (1986) explores
the shortcomings of quasi-experimental estimators. This seemed an appropriate route to take since
the affirmative theoretical case for RCTs appeared so straightforward, at least for the purpose
of estimating average program impact. The argument contained within LaLonde (1986) is some-
times referred to as “LaLonde’s critique of non-experimental estimators” or, more simply,
LaLonde’s critique.

LaLonde (1986) used experimental data on the experiences of participants and non-participants
in the NSW (described above) to test the effectiveness of estimators often used to evaluate such
training programs with non-experimental data. Basically, those randomly assigned to participate
in the NSW labor market program and to not do so provided benchmark results. That is, the
RCT experimental sample provided benchmark results regarding program impact. LaLonde then
explored the performance of a range of quasi-experimental estimators in terms of their ability
to recover these benchmark results. Specifically, he used the sample of participants in the pro-
gram (i.e. the subsample randomly selected to participate), and, following the practice of many
quasi-experimental studies, used a non-randomized control group constructed from other nationally
representative surveys. In other words, he crafted a non-experimental sample. The basic idea was
to see how much is lost by using quasi-experimental estimators to evaluate the effect of the program
with such samples.

The particulars of the quasi-experimental estimators LaLonde (1986) examined are not impor-
tant at this stage (many will be discussed in detail in chapters to come). The important point is that
these estimators are all designed to generate estimates of program effects with non-experimental
data. LaLonde found that these quasi-experimental estimators generally did not deliver reliable
estimates of the impact of the program. Perhaps more disturbingly, his results hint at the possibil-
ity that conventional specification tests that researchers at the time might have used to select an
appropriate specification for the quasi-experimental estimators generally did a poor job in terms
of recommending that specification which yielded results closest to those provided by the fully
randomized sample. Put simply, LaLonde’s work suggests that quasi-experimental estimators are
not reliable.

Not surprisingly, Lalonde’s critique has not gone unchallenged. Using the JTPA data to ex-
pand on LaLonde’s (1986) basic exercise, Heckman and Smith (1995) point out that much better
performance can be had from quasi-experimental estimators with sufficiently rich data on non-
participants from the same labor markets; LaLonde’s results thus partly reflect the “crudity of his
data”(Heckman and Smith 1995 p. 91). They also note that the NSW sample that LaLonde used
allowed him to assess only a limited range of quasi-experimental estimators and question his failure
to pursue a broader range of tests to guide model selection (see also Heckman and Hotz (1989)).

That said, LaLonde’s (1986) basic criticism remains persuasive to many. As time has gone
by a more general argument for RCTs has emerged. It essentially focuses on the assumptions
required for quasi-experimental estimates produced from non-experimental samples to be viewed
as reflecting causal program impact. Estimates generated with experimental samples do not, by
contrast, entail such assumptions. Aside from fundamental questions about the validity of those
assumptions, a certain degree of skepticism about quasi-experimental methods has also arisen in
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the face of a near endless methodological discussion about the intricacies of their performance. In
short, the attractiveness of RCTs and the experimental samples they generate has in part been
driven by ongoing skepticism about the reliability of the quasi-experimental methods that serve as
the most obvious alternative.

3.4 Randomization and Its Discontents

Of course, skepticism can be a two-way street. RCTs have also proven controversial. The attractive-
ness of RCTs hinges on meeting in practice Manski’s (1996) conditions for a successful experiment
as well as their ability to answer a broad enough range of questions to inform policymaking usefully.
Both have been called into question.

It is generally accepted that an experiment satisfying all of the conditions mentioned by Manski
(1996) can in fact yield valid estimates of average program impact. That being understood, it should
already be clear to the reader that there are a number of ways in which RCTs can be easily undone
by events, in the process falling short of Manski’s conditions. To begin with, generally speaking
individuals cannot be compelled to fulfill their randomly assigned role in an RCT. This has several
manifestations.

First, individuals cannot be forced to participate in an RCT. For instance, some refused from
the outset to participate in the RAND health insurance experiment. The Negative Income Tax
Experiments struggled to attract participants. Since refusal to participate is a behavioral choice,
those who refuse to participate likely differ systematically from those who do not. Because of
this, experimental estimates of program impact can fail to be externally valid, even when they
are internally valid. In this context, internal validity refers to whether the estimates of program
impact are unbiased for that population represented by those who actually take part in the RCT,
while external validity essentially speaks to the usefulness of the experimental estimates of program
impact for predicting behavior in the population of interest for the RCT. Somewhat distinct from
this, many (e.g. Heckman (1992)) have pointed out that, since the expected return to participating
in an RCT is not the same as the expected return from program participation under normal
operational circumstances, those willing to participate in one might be very different from those
who would enroll in a program in the everyday setting in which the program would normally
operate. This is randomization bias.

In this vein, Heckman and Smith (1995) highlight the fact that the practical challenges of
randomization sometimes necessitate a change in the types of individuals participating in an RCT.
For instance, JTPA job training sites feared the “effects of randomization on the quality of the
applicant pool ... to form an experimental control group, centers had to expand the set of persons
deemed acceptable for the program”(p. 100). The basic idea here is that, in order to generate
randomized control samples of sufficient size, sites would be forced to admit lower quality applicants
(to be faithful to randomization, they could not recruit individuals explicitly for the control sample:
they had to recruit them for the trial and then randomly assign them), thus undermining the
representativeness of the sample of participants (in terms of the characteristics of participants
under normal operational circumstances). If this was the case with an already large and established
program, one should be even more concerned about this possibility (this can be thought of as a
manifestation of randomization bias) in the setting of the limited pilot studies that are the place
where RCT advocates argue most forcefully for applying their approach (e.g. Duflo 2003).

Second, individuals cannot be forced to accept their random assignment within the RCT. This
can manifest itself in three ways. They can simply drop out in the face of what they perceive
to be an unfavorable assignment. In the case of the RAND health insurance experiment, the
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high refusal rates for the more onerous plans likely reflected this. The arguments of Newhouse et
al. (1993) that this was effectively random in the RAND case notwithstanding, in general those
who accept their assignment probably differ systematically from those who do not, potentially
generating a correlation between participation status and the characteristics of the individual.
Another manifestation is that, within the context of their selection for participation in the RCT,
they can defy their random assignment. The London citizens in Snow’s Grand Experiment could
(in theory) and probably did sometimes decide to switch water companies. Lastly, they could
attempt to participate in an RCT even if they were not selected to do so and then influence their
assignment within it. Families could elect to move to communities selected for treatment under
PROGRESA.

Third, those assigned to the program non-participant group might seek some alternative inter-
vention. This is called substitution bias (Heckman and Smith 1995). For instance, the children
randomized not to receive a de-worming treatment in the context of an RCT could seek one from
some other source outside of the RCT. This may serve to bias downwards experimental estimates
of the true effect of the program under evaluation.

Finally, they do not have to adhere to their random assignment or remain participants in the
RCT. This is especially problematic since many RCTs involve an initial assignment to a program
participation status and then observation of individuals’ outcomes over time. Even those who agree
initially to participate and accept their assignment can decide to drop out with the passage of time.
When it is non-random (which is probably nearly always the case) it is called selective attrition.
Individuals who accepted their experimental assignment might also defy it with time. For instance,
some of the control subjects in the WISE experiment might conceivably have decided to take iron
supplementation on their own.

The defiance of experimental assignment has led some to focus on alternative evaluation pa-
rameters (see Tool Box on Alternative Evaluation Parameters). While this might seem natural
alternatives, they involve a huge cost: losing our focus on the parameters that originally motivated
the RCT. Moreover, it is really unclear how in any given evaluation what information, if any, these
alternative parameters provide about average program impact.

Tool Box: Alternative Evaluation Parameters

Intention to Treat (ITT) analysis compares the outcomes of interest by assignment to the
participant and non-participant group, rather than actual participation status. Intention to
treat analysis yields the impact of treatment assignment (which is not the same as treat-
ment because some have an actual treatment status that does not match their treatment
assignment).
Per Protocol analysis generally involves restricting attention to those who adhere to their
participation assignment. Because those who do adhere to their assignment are probably a
non-random sub-sample of those selected to participate in an RCT, it is unclear how gen-
eralizable their experiences may be. Indeed, if refusal of randomly assigned status depends
on assignment, their experiences may not even support internally valid estimates of impact.
Clearly, intention to treat and per protocol analysis do not seek to estimate the same treat-
ment impact parameters, and hence are not the same thing (a point about which there is
sometimes some degree of confusion).

All of these potential complications of RCTs have led to a certain degree of skepticism regarding
their true credibility as estimators of average program impacts for the population of interest. In
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terms of whether their results are credible, reflecting on Hausman and Wise (1985) and Manski
and Garfinkel (1992), Manski (1996) writes “these assumptions [ie those on which RCTs rest] may
sometimes be appropriate but very often there is good reason to doubt their realism ... Many of the
contributors to the volumes edited by Hausman and Wise (1985) and Manski and Garfinkel (1992)
find that the classical argument for random assignment is not credible when applied to recent exper-
imental evaluations of income maintenance, welfare, training, and other social programs”(p.711).
Manski goes on to explore the inferences that can be made with purportedly experimental data
when one or more of the classical assumptions justifying RCTs fails to obtain, and finds the picture
significantly complicated. For our purposes, Manski (1996) makes several important points. First,
treating data as experimental does in fact require making certain assumptions (listed earlier in this
chapter). Second, these assumptions are, even in the case of RCTs, often not credible. Third, when
they fail to hold, the inferences one can reasonably and easily make with the resulting sample fall
considerably short of what was originally advertised.

In many applications there is probably no way to operationalize tests against all of the possible
ways that randomization can fail and we are unaware of any omnibus test that covers all possibilities.
Moreover, it isn’t really clear exactly how RCTs could be improved in light of these possible failures.
As Manski (1996) puts it:

“An initially appealing but ultimately empty response to this situation is to say that
we should strive to design and execute better experiments. This response is ultimately
empty because it is logically impossible to observe outcomes under alternative programs.
Each member of the population actually receives exactly one treatment in one program.
All attempts to compare programs, whether based on experimental or non-experimental
data, face the problem of counterfactual inference.”(p. 730).

In this respect experimental estimates may not in practice always be so conceptually different
from quasi-experimental estimates derived from non-experimental data: both approaches rely on
assumptions that may or may not be credible or testable, depending on the empirical objective and
the context (the sample, institutional environment, etc.).

Heckman and Smith (1995) offer a very useful list of cautionary points regarding the utility
of RCTs in terms of generating sufficiently useful, relevant information to meaningfully inform
programming. These include:

1. RCTs cannot estimate many important program impact parameters. For instance, while it is
clear that one can in theory easily recover average program impact with experimental data,
it is generally not so straightforward to estimate median or quantile effects, the proportion
of participants experiencing a positive program impact, etc. Heckman and Smith offer one
rather dramatic instance of an experimental sample with which one cannot, given the mean
program effect, distinguish between a situation where the program had a beneficial impact for
many and a detrimental impact for many others, and a situation where the program serves
and harms only a few.

Suppose that we want to estimate the average treatment effect E(Y 1−Y 0). By the properties
of expectations, E(Y 1 − Y 0) = E(Y 1) − E(Y 0). Experimental data insures that program
participants and non-participants are alike on average (with the exception of their program
participation experience). Then, the average of Y 0 for those not participating provides a
valid estimate of E(Y 0) for all, while the average of Y 1 for those participating provides a
valid estimate of E(Y 1) for all. Experimental data thus allows us to make inferences about
the average program impact without building an empirical model of individual outcomes (as
some quasi-experimental estimators do at the cost of assumptions).
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But such quasi-experimental models can provide some payoff for those additional assumptions.
Certain such models provide the joint distribution of Y 0 and Y 1. In other words, assuming
that the model is correct (i.e. the assumptions are justified), they provide us with a way
of obtaining a valid estimate of Y 0 and Y 1 for each observation in our sample. This is
exactly the information one needs to estimate a median program effect. Letting med indicate
“median.”The basic challenge for forming an experimental estimate of median program effects
is that

med(Y 1 − Y 0) 6= med(Y 1)−med(Y 0)

Thus, even with experimental samples there is no easy way to estimate median program
effects without resorting to exactly the sort of quasi-experimental assumptions which the
randomized trial approach had sought to avoid;

2. RCTs carried out in the context of a limited pilot implementation of a program raise several
concerns, perhaps the most importance of which is that the experimental estimates must
be regarded as estimating strictly partial equilibrium effects (see, for example, Heckman et
al. (1998)). This means that the evaluation of the pilot program takes as given all sorts
of broader environmental factors that may themselves be changed as the program expands
and begins to effect, in equilibrium, aggregate circumstances. However, these changes to the
environment within which the program operates may serve to limit the degree to which results
obtained from the pilot study can be generalized. To be sure this is potentially a concern
with non-experimental samples as well. However, evaluations with such non-experimental
samples tend to involve more often active programs already instituted on a fairly wide scale,
thus reducing this concern;

3. In many instances, there are real institutional constraints on the implementation of purpose-
ful RCTs. It is not straightforward how to randomize meaningfully participation in many
programs. Heckman and Smith discuss the stages involved in program enrollment, and point
out that the questions that RCTs can answer hinge on the stage at which the randomization
occurs (see as well Angrist and Imbens (1991) and Heckman and Smith (1993)).

All of these points speak to the possible limits to the usefulness of the information generated
from experimental samples, even if internally valid estimates of some average treatment effects are
possible with them.

Deaton (2010) has recently tossed a few more logs on the fire regarding the usefulness of the
information RCTs yield. He seems to feel that RCTs have been somewhat oversold. He offers
several distinct critiques. Some of his points effectively echo the concerns raised by Heckman and
Smith (1995). However, he emphasizes a number of other reasons for concern regarding RCTs,
both practical and philosophical.

Perhaps most importantly, Deaton (2010) emphasizes that RCTs cannot shed any light onto
the process behind program impact. This is in some sense a natural extension of Heckman and
Smith’s (1995) concern about the limited information that randomization can yield. Deaton’s
(2010) criticism could apply to most quasi-experimental approaches as well. Estimation models for
quasi-experimental estimators, like experimental estimates, tend not to be directly and explicitly
motivated by theoretical or behavioral models within which program participation and outcomes
of interest are linked via carefully outlined pathways by which the former influences the latter.
They simply strive to capture some statistical average impact measure by teasing out some random
channel of otherwise non-randomly determined program participation. Randomization is in that
sense the ultimate example of a purely statistical, atheoretical evaluation approach that seeks simply
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to recover average impacts. However, without explicitly considering, for instance, the pathways by
which programs influence outcomes, we cannot know how they work (in the sense of having a
positive average impact) if they do or why they failed (in the sense of having zero or even negative
average impact) if they did not work. Similarly, without a model that captures the heterogeneity of
the processes across the population, one cannot know for whom they worked within the population
or whether they worked for different reasons for different types of members of the population.
Sometimes this may not make a difference (e.g. the salutary adjustments to water quality made
based on John Snow’s work essentially preceded the modern germ theory of disease). But for many
other sorts of programs this information would be critical for achieving more effective program
delivery or more effective targeting of the program within the population.

Tool Box: Data Designs

A pre-post design is one in which observations are made before and after the start or
application of treatment/participation.
A post-only design involves observation only after the initiation of treatment/participation.
A design in which both participants and non-participants (alternatively, the treated and
un-treated) are observed is called a treatment-control design.
Data for which participants and non-participants are observed before and after the initiation
of program exposure for participants is often referred to as a treatment-control pre-post
design.

3.5 Estimation Methods

It might seem intuitive that experimental samples can yield estimates of average treatment effects16

simply by averaging Y 1 across the program participant sample and then subtracting from that the
average of Y 0 across the program non-participant sample. Indeed, this is sometimes more or less
the practice.

In practice, however, average program impacts are frequently estimated with more elaborate
modelling. Indeed, somewhat ironically, average program impact is often estimated from experi-
mental samples with quasi-experimental models. Sometimes, modelling can simply generate more
precise estimates of program impact. For this purpose multiple regression has been a popular
choice, though recent work has suggested better alternatives. Alternatively, the desire to model
can reflect some unusual feature to the outcome distribution of {Y 1, Y 0}. We have already seen an
example with the RAND Health Insurance experiment, where one goal was to estimate the impact
of insurance status on health care expenditures, which in their distribution often exhibit pronounced
mass at zero, reflecting the fact that in any given observational interval many households and indi-
viduals might have no health care expenditures. The RAND team’s preferred solution to this was
something called the two-part model. Sometimes the modelling strategy has the attractive feature
of providing something of a test of randomization. A ready example is the frequent application
of the difference-in-differences model to treatment-control pre-post randomized samples (see Tool
Box on Data Designs). In no sense does this undermine the estimates as experimental per se.
The goal is usually the better fit and precision these more elaborate quasi-experimental models
might offer. In this context, the estimates are not regarded as relying on the non-experimental

16As we have seen, depending on the design of the experiment they might more properly be thought of as the
average effect of treatment on the treated.
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data assumptions of these quasi-experimental estimators. Rather, complete randomization is still
viewed as the source of identification of average program effects. This may be less true in instances
where the quasi-experimental methods are applied to obtain impact parameters beyond average
program impact. In such instances the estimates should generally not be viewed as resting exclu-
sively on an assumption of full randomization (since that might not be sufficient to identify the
impact parameter in question).

Quasi-experimental estimators can offer some recourse when randomization of program partic-
ipation is less than complete. For instance, we have seen cases with the Oregon Health Insurance
Experiment and the draft lottery where there is a genuinely random element to assignment, but
final assignment is still to some degree a behavioral choice. In these instances appeal has frequently
been made to a modelling strategy called instrumental variables.

We will discuss all of these methods in subsequent chapters. We did not do so in this chapter
because a full understanding of a quasi-experimental model’s implications for analyzing experi-
mental samples requires a complete technical discussion of that model, which would have been a
digression in the context of this chapter.

3.6 Some Closing Thoughts

Purposeful social experiments (a.k.a. randomized control trials) are currently experiencing a
“Golden Age” of popularity as an impact evaluation tool in international development. Ran-
domized control trials provide perhaps the most theoretically compelling solution to the challenge
of program impact evaluation: insure that the participants and non-participants differ by only the
experience of program participation by eliminating their capability to select themselves into the
participant and non-participant groups (indeed, by randomly assigning them to the participant
and non-participant groups) and, by doing so, introduce ways that they could differ other than
just the experience of participation. As a result of random assignment to the participant and
non-participant groups, any average difference in the outcome of interest between the two can be
ascribed to the experience of program participation. In other words, program participation caused
any observed differences in outcomes between the participant and non-participant groups. The
promise of the randomized control trial approach is thus immense, opening the way for the possi-
bility of clear cut evidence for guiding policymaking where all too often there have been muddled
or confusing messages and, frankly, in many instances nothing but great story telling.

At the same time, this approach has generated some degree of reasonable skepticism. It seems
to the authors that in many arenas of human welfare policymaking randomization seems to follow
something of a common arc as it grows increasingly popular for its promise of uncomplicated and
uncontroversial inference regarding program impact, followed by something of a period of skepticism
as many of the practical limitations become apparent. These limitations are worth reviewing.

First, many parameters of interest simply cannot be estimated via the randomization approach.
We cited the specific and simple example of median treatment effects, but the list extends to
virtually any parameter where the calculations of impact for the participant and non-participant
groups cannot be additively separated. Perhaps as importantly, many sorts of interventions simply
cannot be evaluated via this method for ethical or practical reasons. For instance, it becomes
immediately obvious that randomization is a tough ethical sell if it seems persuasive ex ante that
either participants or non-participants would likely be harmed by their assignment. For instance, a
relatively straightforward way to resolve the debate over whether vaccines cause autism would be
to withhold vaccinations for a randomly chosen group of children, but one does so with the near
certainty that some of those children would become very ill or even die without the benefit of the
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randomly withheld vaccinations.
More subtly, many of the programs that program implementing stakeholders (for instance,

development agencies such as the World Bank, USAID, the Gates Foundation, etc.) need evaluated
are not amenable to randomization. First, they might be established programs. Second, they often
involve integrated packages of interventions that would be impractical to fully randomize. Finally,
the realities of the funding cycles of donors often render impractical the notion of a preliminary
randomized control trial before full roll out of the program. It is telling that many of the persuasive
randomized evaluations of, for instance, the Poverty Action Lab have involved relatively simple
interventions involving little or no integration of distinct program components and were being
examined outside of the context of the normal formal programming process of donors or other stake
holders (such as national governments). Indeed, one could argue that they are often evaluating not
so much programs per say as “theories of change”. The researchers at the Lab would probably argue
that this is not a reason not to pursue randomization as an ultimate standard of program impact
evaluation (and they would have a point about that) but that leaves open the question of how to
conduct evaluations under the more challenging realities of today’s programming environment. In
short, the “randomization or nothing” tack (which, to be sure, the Lab has not advocated) would
simply leave us with no information about the implications of many if not most of the interventions
potentially shaping (for better or worse) human welfare in the world today.

Second, and on a somewhat more discouraging level, randomized designs can be very hard to
execute. We highlighted the shortcomings of, for instance, the RAND Health Insurance experiment
sample. A hasty, but in the end rather unpersuasive, answer to the uneven drop out rates that the
RAND study team encountered would be to try harder to avoid these complications when executing
future randomized control trials. In fact, the RAND study team put an enormous amount of careful
planning and effort into protecting the integrity of that experiment. It is not obvious what, exactly,
they could have done to avoid the uneven participation rates encountered. As long as individuals
have a say in their own affairs (including the experiments in which they do and do not participate)
it is frankly impossible to insure absolutely the integrity of randomization.

Randomized control trials are an extremely powerful tool for program impact evaluation that
hold the potential to offer persuasive evidence regarding the efficacy of many sorts of programs
and interventions where none has existed to this point. But it is already clear that randomization
cannot be taken for granted, and this method cannot answer all of the questions that urgently need
answering as we attempt to allocate scarce resources across alternative programs.



Chapter 4

Selection on Observables

We have now reached a major turning point in our discussion of program impact evaluation meth-
ods. For the remainder of this manual the focus will be on quasi-experimental methods. We will
discuss these quasi-experimental models in the context for which they were originally developed: the
estimation of causal program impact with non-experimental samples. We defined non-experimental
samples in Chapter 3 as ones within which program participation is not completely randomized.
As such, they involve some channel of non-random determination of program participation, even if
there were random elements influencing participation as well.

Program impact is the change in some outcome of interest (which could be a behavior, actual
outcome, etc.) caused by program participation. Quasi-experimental estimators recover valid esti-
mates of program impact from non-experimental samples by assuming the presence of some channel
of random variation in program participation out of the total variation in participation, which is
on the whole not fully random. Sometimes, this is equivalent to assuming some hypothesized
mechanism for the failure of fully randomized program participation in the observed sample. The
credibility of a particular quasi-experimental estimator in the context of a given impact evaluation
using non-experimental data essentially reflects the plausibility (in that context) of the assumptions
on which that estimator is premised.

Basic and arguably reasonable hypothetical guidelines for comparing quasi-experimental esti-
mates (assuming that available data allows pursuit of more than one method) might be as follows:

1. Given equally credible assumptions across models, results yielded by methods requiring fewer
assumptions are likely more credible;

2. Given models with an equal number of required assumptions, results yielded by models fea-
turing particularly strong assumptions are less credible.

Of course, this does not always suggest a clearly preferred quasi-experimental estimate since each
rule is based on a ceteris paribus (other things being equal) condition unlikely to be met in practice.
The first condition requires a careful understanding of each quasi-experimental method. This
will allow practitioners to enumerate clearly and comprehensively the assumptions behind a given
method. The second condition should, wherever possible, be informed by any available statistical
test that might allow for assessment of the assumption (as opposed to reliance on arbitrary opinion).
In any case, best practice requires transparency in terms of the assumptions behind a given quasi-
experimental estimate. This is crucial for assessing the credibility of that estimate.

Despite this focus on the application of quasi-experimental methods to non-experimental data
to recover program impact, quasi-experimental methods are sometimes applied to the task of gen-
erating average program impact estimates using experimental samples. In the last chapter we
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defined experimental samples as featuring the complete randomization of program participation,
most naturally through a purposeful social experiment where randomized program participation
is explicitly engineered (i.e. an RCT). Where appropriate such applications of quasi-experimental
methods are discussed after the given quasi-experimental method has first been fully discussed in
the non-experimental data setting.

In this chapter, we discuss methods that rely critically on a “selection on observables” assump-
tion to identify program impact with non-experimental samples. This assumption means essentially
that we can observe in our data all of the non-random factors that guide the outcome of interest
and the program participation decision. If we were able to observe all of these factors we could,
by a variety of methods, control for their role in shaping the outcome of interest. The remaining
variation in that outcome would then be that driven by program participation and purely random
variation. Since the latter would presumably be the same on average between participants and non-
participants (and hence any representative samples of the two) the average difference in outcomes
between the two groups would thus reflect the impact of program participation.

Broadly (and, frankly, crudely) speaking, “selection on observables” methods fall into three
broad categories: multiple regression modelling; matching; various combinations of the two. We
begin by discussing regression, since it is probably the most widely used (both historically and,
taking the broad view across social science disciplines, even presently) strategy in the class of
methods relying on the “selection on observables” assumption. We then move on to matching
methods, and discuss the link between the two approaches.

This chapter will not offer an exhaustive, detailed coverage of all of the various specific impact
estimation approaches relying on the “selection on observables” assumption. First, although the
above categorization of the models relying on this assumption is arguably not unreasonable, it is
very crude in the sense that there have been an incredible number of specific variations on each,
in recent years particularly where matching is concerned. Second, the methodological literature is
ever-evolving, offering seemingly unending new variations on these approaches to modelling under
this assumption.

Instead, the focus in this chapter will be the broad properties of this class of impact evaluation
estimators. These properties generally apply, in one fashion or another, to most of the specific twists
that have been developed in this vein of the impact evaluation literature. Indeed, a major theme
of the chapter is that the empirical differences between the various methods relying on a “selection
on observables” assumption are likely of secondary importance to their common foundation in that
assumption.

4.1 Regression

The first major estimation method relying on a “selection on observables” assumption that we
consider is multiple regression. This is a technique that we have already discussed in Chapter
2 in the context of exploring the basic challenge of program impact evaluation. In that earlier
discussion, we learned that regression can be used as a technique to control for factors (in the earlier
discussion we focused on just one factor) that might be related both to program participation and
the outcome of interest. Moreover, it was demonstrated that the failure to include that factor that
influenced program participation and the outcome of interest in the regression resulted in a “biased”
estimate of program impact. We will now review and elaborate a bit on that simple case before
moving on to the more general case of multiple regression, wherein we can control for numerous
factors influencing both program participation and the outcome of interest, before concluding with
a caveat about adding controls, as well as a discussion of estimating the precisions of estimates and
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the application of the method to experimental data. The regression discussion is one of the longer
and more detailed of the manual. Though the technical discussion (and, to be sure, math) can
at times seem tedious, a thorough understanding of the mechanics of regression provides a solid
foundation for understanding the rest of the topics discussed in the manual.

4.1.1 Regression Basics: The Simple Case

In the introduction we suggested that the credibility of an estimate of program impact provided
by a quasi-experimental estimator of program impact applied to non-experimental data hinges on
the assumptions behind that estimator. This subsection explores the precise assumptions required
to interpret the estimate of program impact emerging from multiple regression analysis as actually
reflecting the change in the outcome of interest caused by program participation (i.e. true program
impact).

We begin by developing a very simple model of program impact. To do so, we appeal to the basic
potential outcomes framework. We define Y 1 as the outcome of interest an individual experiences
when he or she participates in a program and Y 0 as the outcome of interest he or she experiences
when they do not do so. That individual’s program impact is then

Y 1 − Y 0

In other words, the individual’s program impact is simply the difference in outcomes he or she
would experience were they to participate in the program and were he or she not to do so. Suppose
that the potential outcomes of each individual were determined by

Y 0 = β0 + ε

Y 1 = β0 + β1 + ε

The βs are population parameters that we cannot observe but might be able to estimate. ε is an
unobservable, purely random component of Y 0 and Y 1 that we will assume has an expected value
of zero (i.e. E (ε) = 0).

For the purposes of this subsection, we assume that we are interested in learning the average
program impact for the general population.1 The program impact for that population is the average
treatment effect across it:

E
(
Y 1 − Y 0

)
= E

(
Y 1
)
− E

(
Y 0
)

= E (β0 + β1 + ε)− E (β0 + ε)

= β0 + β1 + E (ε)− β0 − E (ε)

= β0 + β1 + 0− β0 − 0

= β1

β1 is thus the population program impact that we wish to learn about through program impact
estimation.

The observed outcome is
Y = P · Y 1 + (1− P ) · Y 0

where P equals 1 if an individual participates in the program and 0 otherwise. Inserting the
formulas for Y 1 and Y 0 we have

Y = P · Y 1 + (1− P ) · Y 0

1As opposed to some specific subpopulation, particularly program participants.
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= P · (β0 + β1 + ε) + (1− P ) · (β0 + ε)

= P · β0 + β0 − P · β0 + P · β1 + P · ε+ ε− P · ε

= β0 + P · β1 + ε

This is a model by which the observed outcome Y is determined by program participation status P ,
unobserved (but hopefully estimable) population parameters β0 and β1 and an individual-specific
purely random factor ε. Note that at this point we have said nothing about how P is determined,
particularly whether the program participation decision is in any way related to the random element
ε.

Regression is, simply put, a method for estimating the parameters of relationships between
variables. We have just derived a simple model

Y = β0 + β1 · P + ε

Through the regression approach to program impact evaluation we could obtain estimates of β0 and
β1. Clearly, the hope is that the estimate of β1 would indeed reflect what that parameter represents:
program impact. It would thus hopefully reflect only the causal effect of program participation P
on Y : the change in Y that occurs when the participation decision “switches” an individual from
Y 0 to Y 1 (i.e. changing from P = 0 to P = 1). Perhaps the most important issue before us then are
the conditions we must assume hold for the regression estimate of β1 to be interpreted as providing
the causal impact of program participation, P , on Y .

Suppose that we have a sample of N units of observation. We use this formal term, but usually
this means a sample of individuals, since readers of this manual are probably typically concerned
with the impact of human welfare programs on individuals.2 For expositional simplicity, for the
rest of this manual we will assume simply that the units of observation are individuals. For each
individual in our sample we observe Y and P . Specifically, we observe {Yi, Pi} for each of the
i = 1, ..., N individuals in our sample.

We can then apply the regression approach to this sample to form estimates of β0 and β1. These
estimates are represented by β̂0 and β̂1, respectively. There are a variety of ways of forming the
regression estimates β̂0 and β̂1. Three popular alternatives are ordinary least squares estimation,
method of moments estimation, and maximum likelihood estimation. The differences between these
approaches are not of great importance for the discussion to follow. We will touch on maximum
likelihood estimation a bit later in this chapter, and discuss the method of moments in a subsequent
chapter the focus of which is instrumental variables methods for program impact evaluation. For
now, we concentrate on the (relatively) simple approach of ordinary least squares.

To begin with, the estimate of the random component ε for the ith individual in the sample per
the regression estimates is

ε̂i = Yi − β̂0 − β̂1 · Pi
Although we have to this point described ε as the random component of {Y 0, Y 1} (and hence Y ),
in the language of regression this is often referred to as the regression residual or regression
error term. These terms are motivated by the idea that ε is some factor driving Y beyond the
variation generated systematically by Pi given the parameters {β0, β1}. It is the residual remaining
beyond the variation that can be explained by P , and can also be considered as an error term that
is the difference between actual Y and what the value of P predicts Y should be given {β0, β1}.

2To be sure, the units of observations could be other entities. For example, we might be interested in the impact
of a program on firm or organization behavior.
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Ordinary least squares regression involves finding the estimates β̂0 and β̂1 that minimize the sum
of estimated squared residuals across the sample. Thus, given the data described above, ordinary
least squares finds the values of β̂0 and β̂1 that minimize

N∑
i=1

ε̂i
2 =

N∑
i=1

(
Yi − β̂0 − β̂1 · Pi

)2
One way of thinking about this is that we seek to find estimates β̂0 and β̂1 of β0 and β1, respectively,
that minimize the estimated role of the random component ε in explaining variation in Y . In other
words, we seek the estimates β̂0 and β̂1 that maximize the variation in Y explained by P , and in
so doing capture fully the systematic role of P in shaping Y .

It turns out that the solutions to this minimization problem are given by

β̂1 =

∑N
i=1(Pi − P ) · (Yi − Y )∑N

i=1(Pi − P )2
=

∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

and
β̂0 = Y − β̂1P

where

Y =

∑N
i=1 Yi
N

and

P =

∑N
i=1 Pi
N

Because of these specific formulas by which they are computed given a specific sample (containing
observations of {Yi, Pi} for i = 1, ..., N), we refer to β̂0 and β̂1 not just as estimates but also
estimators of β0 and β1, respectively. (By comparison, β0 and β1, the parameters we wish to
estimate, are the estimands.3) When we refer to them as estimators, we mean the formula for
estimating β0 and β1. When we refer to them as estimates, we mean the values for β̂0 and β̂1 that
these formulas yield given a specific sample (containing observations {Yi, Pi} for i = 1, ..., N).

In chapter 2, we saw two methods of assessing whether β̂1 is capturing the causal effect of P
on Y : we can examine whether it is either an unbiased or consistent estimator of the effect of
program participation on the outcome of interest. To begin with, we must recognize that β̂1 is a
random variable, if for no other reason than that different samples will have, by random variation,
somewhat different mixes of Yi and Pi and, perhaps, different specific sizes N . Thus, the value of
β̂1 will vary somewhat from sample to sample. Given that β̂1 is then a random variable, in Chapter
2 we learned the subtly different meanings of consistency and unbiasedness:

1. Unbiasedness: Because it is a random variable the estimator β̂1 will have an expectation
E(β̂1). In general, an estimator is unbiased if its expectation E(·) is in fact the true value
of the parameter for which we wish to form an estimate. Per the fancy terminology above,
an estimator is unbiased if its expected value is indeed the estimand. In this case, we wish
to form an estimate of the impact of P on Y , which in our simple regression model is β1.
Therefore, the estimator β̂1 is unbiased if E(β̂1) = β1. What does this mean in plain terms?
An easy way to think about this is to conceptualize drawing many, many samples of size N
and forming the estimate β̂1 for each sample. If the average of these estimates across these
many samples is β1, then β̂1 is an unbiased estimator of β1. For this reason, unbiasedness is
sometimes referred to as being right on average;

3The term estimand is often used a bit loosely in practice. Sometimes it would seem to mean what an estimator is
actually estimating, at others it would seem to indicate what one wishes to estimate. We adopt the latter definition.
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2. Consistency: Because an estimator is a random variable, it has a probability distribution.
In other words, it has probabilities attached to the possible values that it can take in a given
sample. An estimator is consistent if, as sample size increases, the values that it can take on
with positive probability become increasingly concentrated on the true value of the parameter
one wishes to estimate. In the case of an estimator with continuous range, it is consistent
if its probability density collapses around the parameter we wish to estimate as sample size
grows. A somewhat crude but useful way of thinking about consistency is that it establishes
that values for the estimator that deviate from that of the true parameter we wish to estimate
become increasingly improbable as sample size increases.

Both concepts speak to the idea of a central tendency of the estimator but involve different ways
of approaching the concept.

Unbiasedness involves the average value of the estimates generated by an estimator across many
samples of the same size. It is a property that therefore holds regardless of sample size. Consistency,
on the other hand, is concerned with the probability distribution of the estimator as the sample size
becomes increasingly large. Figure 4.1 provides an illustration of the basic dynamics of consistency
for an estimator µ̂ of some population parameter µ. At a lower sample size N , the probability
density of the estimator µ̂ is concentrated around a value other than the true population parameter
(and hence presumably biased). However, as the sample size N grows, the density begins to
concentrate or collapse around the true population value for the parameter. Consistency does not
necessarily imply unbiasedness nor does unbiasedness necessarily imply consistency.4

We will start by focusing on the conditions under which β̂1 is an unbiased estimator of the
impact of program participation P on Y . (This is an entirely reasonable departure point since we
are rarely blessed with samples of infinite size.) We start this process simply enough, by writing
the expectation down:

E
(
β̂1
)

= E

(∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

)
The next step is to insert the true model outlining the causal link between P and Y by substituting
out Yi:

E
(
β̂1
)

= E

(∑N
i=1(Pi − P ) · (β0 + β1 · Pi + εi)∑N

i=1(Pi − P )2

)
Multiplying out, we have

E
(
β̂1
)

= E

(∑N
i=1(Pi − P ) · β0∑N
i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · β1 · Pi∑N

i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

β0 and β1 are population parameters from the regression model and as such basically mathematically
operate as constants:

E
(
β̂1
)

= β0 · E
( ∑N

i=1(Pi − P )∑N
i=1(Pi − P )2

)
+ β1 · E

(∑N
i=1(Pi − P ) · Pi∑N
i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)
4To provide some examples of these possibilities, suppose you have a sample of N observations of a variable Z.

Then ∑N

i=1
Zi

N
+

1

N

is a consistent but biased estimator of the population mean of Z. On the other hand, Z1 (i.e. the first observation
on Z in a given sample) is an unbiased but inconsistent estimator of the population mean of Z. For the technically
inclined, any estimator that is unbiased and also converges (convergence is a topic we will discuss below) to a constant
is consistent.
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We next note that
∑N
i=1(Pi − P ) = 0 and, therefore,

E
(
β̂1
)

= β0 · E
(

0∑N
i=1(Pi − P )2

)
+ β1 · E

(∑N
i=1(Pi − P ) · Pi∑N
i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

= β1 · E
(∑N

i=1(Pi − P ) · Pi∑N
i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

Finally, we note that
∑N
i=1(Pi − P ) · Pi =

∑N
i=1(Pi − P )2. Therefore

E
(
β̂1
)

= β1 · E (1) + E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

= β1 + E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

We have thus established that whether E(β̂1) = β1 hinges on whether

E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)
= 0

What remains is to explore what this condition means.
Let us begin by recalling a key property of expectations:

E (Z1 · Z2) = E (Z1) · E (Z2)

Figure 4.1: Consistency
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only if Z1 and Z2 are independent. If we assume P and ε are independent, we could write

E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)
=

N∑
i=1

(
E

( ∑N
i=1(Pi − P )∑N
i=1(Pi − P )2

)
· E (εi)

)

Since E(ε) = 0, independence of P and ε insures that

E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)
= 0

In other words, independence of program participation P and ε insures that E(β̂1) = β1 (in other
words, that the least squares estimator provides an estimate of true, causal program impact). We
should be clear, however, what full independence means: it means that the regressor P is completely
independent of the error term ε. In other words, it means that all of the P s ({P1, P2, ..., PN}) are
independent, in every sense, of all of the εs ({ε1, ε2, ...εN}).

Unbiasedness can actually be established with the slightly weaker condition of mean indepen-
dence of P and ε. Specifically, let

~P =



P1

P2

.

.

.
PN


In other words, ~P is just the set of values for Pi that occur across all of the i = 1, ..., N observations
in our sample. Unbiasedness requires that εi is mean independent of ~P , or

E
(
εi|~P

)
= E (εi) = 0

for all i = 1, ..., N observations in the sample.5 In other words, none of {P1, P2, ..., PN} reveals any
information about the expected value of εi.

6

To show that this condition is sufficient to establish the unbiasedness of β̂1 requires appeal to
something called the Law of Iterated Expectations, which states that, for two variables Z and
W ,

E (W ) = EZ (E (W |Z))

where EZ (·) is the expectation over the distribution of Z. This basically tells us that the uncondi-
tional expectation of W , E (W ), is the expectation across the distribution of Z of the conditional
expectation E (W |Z). It might be easiest to think of this in terms of Z being a discrete variable.
Then, E (W ) is the weighted sum of the terms E (W |Z = zk) · Pr (Z = zk) across the k = 1, ...,K
values of Z with positive probability of occurring.

We now return to the expression

E
(
β̂1
)

= β1 + E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)
5Mean independence is weaker than independence because independence implies no relationship whatsoever be-

tween P and ε. Under mean independence, there could still be, for instance, some relationship between the variance
of ε and P .

6The condition is sometimes written as either E(εi|~P ) = 0 or E(εi) = 0 (for all i = 1, ..., N in both cases).
Basically, either of these conditions imply E(εi|~P ) = E(εi) since they leave ~P no role in shaping the expectation of
εi.
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Conditioning on the observed ~P (i.e. proceeding as if ~P was not random but assumed fixed at
whatever values for {P1, P2, ..., PN} we happen to observe in our sample of size N), we have

E
(
β̂1|~P

)
= β1 + E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

|~P
)

= β1 +

∑N
i=1(Pi − P ) · E

(
εi|~P

)
∑N
i=1(Pi − P )2

Since we are making the mean independence assumption E
(
εi|~P

)
= 0,

E
(
β̂1|~P

)
= β1

But the Law of Iterated Expectations tells us that

E
(
β̂1
)

= E~P

(
E
(
β̂1|~P

))
= E~P (β1) = β1

Thus, the mean independence condition E(εi|~P ) = E(εi) is sufficient to insure the unbiasedness of
β̂1 (i.e. that β̂1 is an unbiased estimator of true program impact β1).

Independence and mean independence have implications for the assumed process governing pro-
gram participation. Independence means that program participation is completely unrelated to the
εs. Mean independence means that P reveals no information about the value of ε. This means,
among other things, that the P s and ε are completely uncorrelated. Thus, under independence
one assumes that the εs are completely unrelated to (including uncorrelated with) the program
participation decision. Under mean independence, one assumes that the εs are uncorrelated with
the program participation decision. In other words, in either case, one assumes that program par-
ticipation is completely uncorrelated with the unobserved determinants of the outcome of interest.

If the condition E(εi|~P ) = E(εi) is not met, then in general β̂1 is not an unbiased estimator of
β1. In particular, there is the possibility that even if Pi is uncorrelated with εi (i.e. there is no
pairwise correlation: corr (Pi, εi) = 0) it may be correlated with some εj where j 6= i. Thus, εi is

not fully mean independent of ~P .7 A classic example of how this could arise would be given by the
following hypothetical model:

Yi = ϕ0 + ϕ1 · Yi−1 + εi

In this case the regressor Yi−1 is clearly correlated with εi−1.
8 In such an instance the least squares

estimator is biased. However, it is still consistent as long as there is no pairwise correlation (i.e.
as long as corr (εi, Pi) = 0).

Establishing this requires the introduction of something called a probability limit. First, let
ẐN represent a sequence of estimates for different sample sizes N : {Ẑ1, Ẑ2, ..., ˆZ100, ...}. In other
words, this is the sequence of estimates obtained as sample size grows ever larger. This sequence
converges in probability to a value Z if

limN→∞Pr
(
|ẐN − Z| ≥ ν

)
= 0

7If, for instance, Pj and εi (where j 6= i) are correlated, then the value of Pj does reveal something about the
expected value of εi.

8To be consistent, we use only the subscript i, which indexes individuals, in the main text. However, this model
most often arises in the time series context in which the observations are from individual i at time t:

Yi,t = ϕ0 + ϕ1 · Yi,t−1 + εit

In this context this is often referred to as the lagged dependent variable model.
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Although this seems like a complicated expression, it says something quite simple. As sample size N
grows infinitely large, the probability that the estimate ẐN is outside of the interval [Z − ν, Z + ν]
becomes 0. If this is true, the sequence (across successively larger sample sizes N) of estimates ẐN
converges in probability to Z. This is also captured by saying Z is the probability limit (or
“plim”) of the sequence ẐN :

plim
(
Ẑn
)

= Z

This expression simply means that as the sample size becomes infinite, the probability that Zn
differs from Z by more than some tiny amount eventually becomes zero.

Probability limits, with their appeal to infinite sample sizes, are the natural tool for considering
the consistency of estimators. Probability limits have some very handy properties that expectations
do not. In particular,

E (Z1 · Z2) 6= E (Z1) · E (Z2)

unless Z1 and Z2 are independent. Furthermore,

E

(
Z1

Z2

)
6= E (Z1)

E (Z2)

However, for probability limits,

plim (Z1 · Z2) = plim (Z1) · plim (Z2)

(regardless of whether Z1 and Z2 are independent) and

plim

(
Z1

Z2

)
=
plim (Z1)

plim (Z2)

Otherwise, probability limits share all of the basic properties of expectations.9 Hence probability
limits are in some sense much more flexible than expectations.

To examine the probability limit of the estimate β̂1 we simply repeat the process of the ex-
amination of the expectation E(β̂1) but substitute the probability limit operator, plim(·), for the
expectations E(·) operator10 with the ultimate result being

plim
(
β̂1
)

= β1 + plim

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

However, probability limits allow us to go further:

plim
(
β̂1
)

= β1 + plim

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

= β1 +
plim

(∑N
i=1(Pi − P ) · εi

)
plim

(∑N
i=1(Pi − P )2

)
9With one other exception. In general,

E (g (Z)) 6= g (E (Z))

where g (·) is a continuous function. However,

plim (g (Z)) 6= g (plim (Z))

This is referred to as Slutsky’s Theorem.
10By “something operator”, we mean in effect the statistical function that yields something. Hence, for instance,

plim(·) is the probability limit operator because it yields the probability limit of the variable within the parentheses.
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Substituting in 1/N in the numerator and denominator, we have

plim
(
β̂1
)

= β1 +
plim

(∑N

i=1
(Pi−P )·εi
N

)
plim

(∑N

i=1
(Pi−P )2

N

)
Notice that the numerator is the covariance of Pi and εi. Hence, if the covariance of Pi and εi is
zero (i.e. the pairwise correlation corr(εi, Pi) = 0), β̂1 is a consistent estimator of β1. If Pi and
εi have a non-zero covariance (i.e. they are correlated) then β̂1 is not a consistent (or unbiased)
estimator of program impact β1.

P and ε being pairwise uncorrelated (i.e. corr(εi, Pi) = 0) implies that the program participation
decision of each individual is not correlated with the random component of their outcome. This is
technically weaker than the conditions that would yield unbiasedness, but still speaks to the idea
that program participation is unrelated to the unobserved determinant of the outcome of interest, in
this case for each individual. We thus see that consistency essentially relies on a (behaviorally) very
similar assumption to that required to view the least squares estimator as an unbiased estimator
of program impact.

We have thus established the following:

• If εi is independent of ~P or even just mean independent of ~P , β̂1 is an unbiased estimator of
β1;

• If εi and Pi are uncorrelated (i.e. the pairwise correlation condition corr(εi, Pi) = 0 is met),
β̂1 is a consistent estimator of β1;

• If εi and Pi are correlated (i.e. corr(εi, Pi) 6= 0 ), β̂1 is a biased and inconsistent estimator of
β1.

In everyday practice in the program impact evaluation literature, there can be some imprecision
about the conditions under which least squares provides a biased or consistent estimate of program
impact β̂1. One often hears the basic assertion “β̂1 is unbiased if ε and P are uncorrelated”. While
we have seen that this is not exactly true (unbiasedness requires more) this is still a useful way of
thinking about things in the following sense: clearly if corr(εi, Pi) 6= 0 then β̂1 will be a biased and
inconsistent estimator of program impact β1.

11

We have now uncovered the conditions under which the ordinary least squares estimator β̂1
is an unbiased or consistent estimator of true program impact β1. Unbiasedness and consistency
both require that corr (εi, Pi) = 0 (though unbiasedness requires more than just this). Our next
step is to explore a little bit more thoroughly what is happening, particularly from a behavioral
standpoint, when the regression estimator is biased or inconsistent because corr (εi, Pi) 6= 0.12

We do this because the credibility of the assumptions required to view regression as yielding an
unbiased or consistent estimate β̂1 of program impact β1 is best considered through the lens of
their implications for behavior.

11It is worth noting that this is an instance where unbiasedness implies consistency but not the reverse. Either the
independence or mean independence assumption required for unbiasedness implies no pairwise correlation between
Pi and εi. However, the absence of pairwise correlation does not imply either mean independence or independence.

12Once again, to be sure unbiasedness requires more than just the pairwise condition corr(εi, Pi) = 0. However,
in program impact evaluation we are most often concerned with pairwise correlation, and so we focus our attention
on that case. This is likely, in the program impact evaluation context, to be a feature of any violation of either
independence or mean independence of εi from ~P .
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To do this we introduce a slightly more elaborate model of program impact and hence the
determination of observed Y . Now let us suppose that the true model determining observed Y is
given by13

Y = β0 + β1 · P + β2 · x+ ε

We make the following key assumption: E
(
ε|~P

)
= 0 (i.e. that the random component ε for each

individual is independent of the program participation decision of themselves or any other member
of their population14). This assumption means that the random component of {Y 0, Y 1} (or the
errors from the true population regression model) are mean independent of program participation.
We will also assume that E(ε|~x) = 0 (where ~x is defined analogously to ~P ) but refrain from
discussing the importance of this assumption until the subsection concerned with “bad controls”.

Suppose that, once again, we have a sample of N individuals for whom we observe Y and P ,
but may or may not observe x. If we perform ordinary least squares estimation by regressing Y on
P with that sample, our estimate of β1, β̂1, is, once again,

β̂1 =

∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

The question, of course, is what exactly we would be estimating in this instance.
Once again, we will examine the expectation of β̂1:

E
(
β̂1
)

= E

(∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

)

Next, we substitute in the true model,

yi = β0 + β1 · Pi + β2 · xi + εi

for Yi. This yields

E
(
β̂1
)

= E

(∑N
i=1(Pi − P ) · (β0 + β1 · Pi + β2 · xi + εi)∑N

i=1(Pi − P )2

)

= E

(∑N
i=1(Pi − P ) · β0∑N
i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · β1 · Pi∑N

i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · β2 · xi∑N

i=1(Pi − P )2

)

+E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)
13This is easy to motivate with a simple extension of our model of program impact. We now assume

Y 0 = β0 + β2 · x+ ε

Y 1 = β0 + β1 + β2 · x+ ε

with the rest of the development of the model proceeding in the same fashion but with these two formulas.
14Here we admittedly engage in a bit of hand waving: we earlier defined ~P as the vector containing program

participation {P1, P2, ..., PN} for all N members of some sample from a population. Because we have not yet described
the estimation sample for this example, we for the time being think of ~P as containing the program participation
status for all members of the population. However, if E(ε|~P ) = 0 when we think of ~P as containing the program
participation of all members of the population, then E(ε|~P ) = 0 when we think of ~P as containing the program
participation of any random sample of size N from that population.
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Using the same math as above, we can eliminate the first term and simplify the second:

E
(
β̂1
)

= β1 + E

(∑N
i=1(Pi − P ) · β2 · xi∑N

i=1(Pi − P )2

)
+ E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

Since we assume that P and ε are uncorrelated, we have

E

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)
= 0

Then,

E
(
β̂1
)

= β1 + β2 · E
(∑N

i=1(Pi − P ) · xi∑N
i=1(Pi − P )2

)
(where we also engage in some re-arrangement since β2 is a parameter and hence can be treated as
a constant).

Notice that

E

(∑N
i=1(Pi − P ) · xi∑N
i=1(Pi − P )2

)
is the expectation of the least squares estimator γ̂1 from the model

x = γ0 + γ1 · P + υ

In other words, it is reflective of the relationship between P and x. Our result is thus that

E
(
β̂1
)

= β1 + β2 · E (γ̂1)

The situation is now coming into focus. When we regress Y on P when the true model is

Y = β0 + β1 · P + β2 · x+ ε

the expectation of our estimate of β1, E(β̂1), does not necessarily actually equal the true population
program impact β1. Instead, it equals program impact β1 (i.e. the estimand) plus the term

β2 · E (γ̂1)

This term is the effect of x on Y (i.e. β2) weighted by the effect of P on x.
This term reflects the fact that P is potentially forced to play two roles when we regress Y on

P : a control for itself and a proxy for x. The value of the proxy role depends on the strength of the
relationship between x and Y , weighted by the strength of the relationship between x and P . In
other words, P serves as a proxy for x, but only to the degree that P and x are themselves related.

The bias to β̂1 when P is also forced to serve as a proxy for x is known as omitted variable
bias. It is so known because this bias is an artifact of the omission of x as a regressor. Although
we focus on one omitted regressor, in practice there may be many (a point to which we will return
in the discussion of multiple regression).

If x has no effect on Y (i.e. β2 = 0 ) or x and P are unrelated (i.e. γ1 = 0) then the proxy term
disappears and

E
(
β̂1
)

= β1

In other words, β̂1 would be an unbiased estimator of β1 if β2 = 0 or γ1 = 0.
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Thus, when we employ the regression approach to impact evaluation, we are effectively assuming
that there are no omitted factors from our model that are related to both program participation and
the outcome of interest. This is the key assumption of the regression (and, as we will see, matching)
approach to program impact evaluation: that we observe and control for all of the factors associated
statistically (for whatever reason) with both the outcome of interest and program participation. In
other words, we are essentially assuming that we have measured all that matters from the standpoint
of recovering unbiased estimates of program impact. In many applications, this is likely a fairly
strong assumption.

We now consider a numerical example (this numerical example is contained in the STATA do-
file 4.1.do, but is essentially the same in structure as that in 2.1.do). This example considers the
consequences of regressing Y on P when the “true” model is

Y = β0 + β1 · P + β2 · x+ ε

Specifically, suppose that we randomly generate 30,000 observations based on these two assumed
equations:

Y = 1 + .5 · P + 1.5 · x+ e

where e ∼ N(0,25) and x ∼ N(0,4).15 Note, crucially, that true program impact is .5. P equals 1 if

.5 · x+ ep > 0

where ep ∼ N(0,36) and 0 otherwise. x is thus a determinant of Y and P , the exact circumstance
to which models relying on a “selection on observables” assumption appeal.

STATA Output 4.1 (4.1.do)

. * Summary statistics for the errors and regressors

. summarize e eP x P

Variable Obs Mean Std. Dev. Min Max

e 30000 .0024446 4.991197 -19.5649 21.35932
eP 30000 .0105079 5.948241 -24.66446 23.28767
x 30000 -.0044134 1.996313 -8.141914 8.420812
P 30000 .498 .5000043 0 1

.

. * Correlations between errors and regressors

. correlate e eP x P
(obs=30000)

e eP x P

e 1.0000
eP -0.0058 1.0000
x 0.0020 0.0022 1.0000
P -0.0016 0.7871 0.1290 1.0000

The resulting sample is considered in STATA Output 4.1. The error terms e and ep have means
of roughly 0 and standard deviations roughly in line with what we might expect (e.g., since e ∼
N(0,25), leaving us to expect an empirical standard deviation estimate in the neighborhood of 5).
Notice that the true regression error e is essentially uncorrelated with P and x (with correlations

15Once again, a ∼ N(b,c) means a is distributed as a normal random variable with mean ‘b’ and variance ‘c’. In the
context of this example we would thus be pseudo-randomly drawing 30,000 observations for a normally distributed
variable a with mean ‘b’ and variance ‘c’.
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of -0.0016 and 0.0020, respectively). Importantly, P and x are correlated, as we might expect since
x played a role in determining P .

Let us first regress Y on P and x. The results are presented in STATA Output 4.2. These
results are right in line with where we would hope they would be, given the true data generating
process behind them: the estimated coefficient on P (or, another words, estimated program impact)
is, at .4808799, around .5, while that on the coefficient on x is, at 1.505581, in the neighborhood
of 1.5.

Next we estimate the “wrong”regression model (i.e. omitting the variable x ). The results are
in STATA Output 4.3. We can now see that the omission of x has led to an estimate of program
impact that deviates substantially from that underlying the true data generating process (1.256391,
against the true program impact of .5). This likely reflects omitted variable bias, and from this
example it should be clear how bad it really can be: it has led us to over-estimate the impact of
the program by more than one hundred percent!

In terms of the correlations, P is uncorrelated with the fitted errors from the regression of Y
on P (this is by construction but will become clearer when we discuss the method of moments
approach to regression estimation). However, P ’s correlation with the true error per the “wrong”
model (i.e. 1.5 · x + e) is 0.0649. Since the correlation between P and the error term from the
“true” regression (e) is essentially zero (at -.0016) this means that the correlation between P and
the error per the true model is driven by the term 1.5 · x .

Finally, we consider the nature of the omitted variable bias. In short, when we regressed Y on
P alone, our estimate of the coefficient on P was 1.256391, more than double the true value of .5.
To relate this to our earlier omitted variable bias formula, we first regress x on P . The results are
shown in Output 4.4. We see from that Output that the coefficient on P is .5150909. The omitted
variable bias equation tells us that the estimated coefficient on P when we regress Y on P alone
should be

.4808799 + 1.505581 · .5150909

which equals 1.256931, exactly as the formula predicted.

STATA Output 4.2 (4.1.do)

. * Regressing y on P and x

. regress Y P x

Source SS df MS Number of obs = 30000
F( 2, 29997) = 5585.92

Model 278329.976 2 139164.988 Prob > F = 0.0000
Residual 747330.934 29997 24.9135225 R-squared = 0.2714

Adj R-squared = 0.2713
Total 1025660.91 29999 34.1898367 Root MSE = 4.9913

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .4808799 .0581213 8.27 0.000 .3669597 .5948001
x 1.505581 .0145573 103.42 0.000 1.477048 1.534114

_cons 1.011991 .0408499 24.77 0.000 .9319236 1.092059

Before proceeding we remind the reader of a qualification offered in Chapter 2: program impact
estimates from particular samples can never prove or exclude the possibility of unbiasedness. Un-
biasedness means that the estimator is “right on average”. The way to establish this is to simulate
many samples, estimate program impact for each and then average the impact estimates from those
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many samples. Whether the average does or does not match the true population expected program
impact is the true indicator of unbiasedness.

Particular impact estimates that differ substantially from or adhere closely to the true popula-
tion expected impact might always simply reflect ordinary sample-by-sample variation in unbiased
or biased estimators, respectively. By themselves they do not prove anything. As Tony Soprano
once observed, even a broken clock is right twice a day.

Nonetheless, the fact that the discrepancy between true population estimated impact and the
impact estimate essentially reflected the prediction of the omitted variable bias model is highly
indicative of likely bias. Moreover, the reader knows that within the context of the model the
examples are engineered by the authors to show what we claim they show, and for the reasons
we suggest. Nonetheless, one would do well always to remember what cannot be learned from an
estimate from just one particular sample.

STATA Output 4.3 (4.1.do)

. * Regressing y on P alone

. regress Y P

Source SS df MS Number of obs = 30000
F( 1, 29998) = 350.30

Model 11838.6955 1 11838.6955 Prob > F = 0.0000
Residual 1013822.21 29998 33.7963269 R-squared = 0.0115

Adj R-squared = 0.0115
Total 1025660.91 29999 34.1898367 Root MSE = 5.8135

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 1.256391 .0671286 18.72 0.000 1.124816 1.387966
_cons .6191419 .0473721 13.07 0.000 .5262906 .7119931

We have just seen the essence of omitted variable bias. We regressed Y on P alone when the
true model was

Y = β0 + β1 · P + β2 · x+ ε

In other words, we omitted x, one of the true systematic determinants of Y . By doing so, we made
it impossible to obtain an unbiased estimate of the casual effect of P on Y , β1: the omission of x
biased our estimate of β1. The extent of the bias would depend on the strength of the relationship
between Y and x (β2) and the strength of the relationship between x and P . The intuition should
be familiar at this point: when we omit x, P must serve not only as a control for itself but also as
a proxy for x.

Suppose, for example, that Y is health, P is participation in a health program and x is mo-
tivation. Suppose as well that more motivated individuals are more likely to participate in the
program (establishing a relationship between participation P and motivation x) and that motiva-
tion x does indeed influence health Y . Then, when we regress health Y on program participation
P , our estimate of the effect of P on Y reflects not only the casual effect of participation on health
(which we want) but also picks up to an extent (i.e. the extent to which program participation P
and motivation x are related) the effect of motivation x on health Y . In other words, the omission
of x from the estimation has muddied the waters in terms of obtaining an unbiased estimate of the
impact of program participation P on health Y .

Of course, the bias to β̂1 could, in principle, be resolved easily: simply add x as a regressor (in
other words, regress Y on P and x). Assuming that this is a viable strategy (i.e. assuming that x
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is observed along with Y and P for each individual in some sample), the bias to the estimate of β1
would disappear. The mathematics of such a regression, called a multiple regression, are more
complex (typically involving matrix algebra, which is beyond the reasonable scope of this manual).
However, it can be shown easily that the bias to the estimate of β1 disappears with the inclusion
of x in the estimation (it can also be shown easily that the estimate of β2 will be unbiased).

STATA Output 4.4 (4.1.do)

. * Regressing x on P

. regress x P

Source SS df MS Number of obs = 30000
F( 1, 29998) = 507.74

Model 1989.85791 1 1989.85791 Prob > F = 0.0000
Residual 117564.144 29998 3.91906605 R-squared = 0.0166

Adj R-squared = 0.0166
Total 119554.001 29999 3.98526622 Root MSE = 1.9797

x Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .5150909 .0228594 22.53 0.000 .4702856 .5598962
_cons -.2609287 .0161317 -16.17 0.000 -.2925474 -.22931

Omitted variable bias can also be explained in terms of the potential outcomes framework
introduced in Chapter 2. We defined Y 1 as the outcome an individual experiences when they
participate in a program, and Y 0 is the outcome that individual would experience in the absence
of participation in that program. Y 1 − Y 0 is that individual’s program impact. Their observed
outcome is Y = P ·Y 1+(1−P )·Y 0. Suppose that x influences program participation P . This means
that some types as defined by x are more likely to participate. For instance, if x is motivation (with
larger values associated with more motivation) and more motivated individuals are more likely to
participate, then the average value of x should be higher among participants than non-participants.

To fix ideas, suppose that we have data on Y and P for N individuals. N1 of those N individuals
are participants (P = 1), while the remaining N0 of the individuals are non-participants (P = 0).
We observe Y 1 (but not Y 0) for the N1 participants, and observe Y 0 (but not Y 1) for the N0

non-participants. In principle, we could estimate program impact by considering the difference in
average Y between the participant and non-participant subsamples:∑N1

i=1 Y
1
i

N1
−
∑N0
j=1 Y

0
j

N0
=

∑N1
i=1 Yi
N1

−
∑N0
j=1 Yj

N0

This estimator of program impact is motivated by the idea that the differences in average outcomes
between the two groups is program impact. As such, it seeks to estimate the same thing as is
captured by the parameter β1.

The problem is that we know that these two subsamples differ by more than just their program
participation experience P . Those in the subsample of N1 participants are more motivated (i.e.
have a higher value for x). If x influences Y , it is unclear whether the difference in average Y
between the two subsamples reflects program participation P or motivation x. In essence, the
estimate of β1 obtained by regressing Y on P is plagued by the same problem: P is forced to serve
as a proxy for x because x has a different average value at P = 1 than P = 0.

It is worth re-posing the problem at this point for the purpose of getting at the core assumption
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of the “selection on observables” models. We are interested in obtaining an estimate of β1 from

Y = β0 + β1 · P + β2 · x+ ε

that actually reflects the population parameter β1, the impact of program participation P on Y .
There is another systematic variable (x) that appears in the regression model. It might potentially
influence both participation P and the outcome of interest Y . Suppose we are willing to assume
that x is the only such variable. This is tantamount to assuming that the correlation between P
and ε is zero: corr(P, ε) = 0. Then, by regressing Y on P and x we would obtain a valid estimate of
the causal effect of P on Y , β1. The key assumption is that x is the only variable that shapes both
Y and P . Multiple regression allows for us to control for the effect of x on Y , and hence recover
the causal program impact because the impact of program participation P is the only systematic
source of variation in Y left after doing so.

Because motivation also influences participation, we would expect that its average value among
participants (P = 1) would be different from that among non-participants (P = 0). This alone
can introduce a difference in the average values of Y 1 among participants and Y 0 among non-
participants (even if participation had no effect and E(Y 1−Y 0) = 0 across everyone). But another
way of saying this is that an individual’s participation status reveals something about their values
of Y 1 and Y 0 because participation is acting as something of a proxy for x.

Figure 4.2: Controlling for Observables X

Multiple regression of Y on P and x controls for the effect of x on P , so that remaining
systematic (as opposed to random) variation in Y must reflect the impact of program participation
P . In other words, since Y = P · Y 1 + (1− P ) · Y 0, once the effect of x on Y is controlled for, the
remaining variation in Y comes from switching between Y 1 and Y 0 depending on each individual’s
value of P . In other words, P offers no information about {Y 1, Y 0}. It acts merely as a switching
mechanism between Y 1 and Y 0.
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This is in essence the key assumption of “selection on observables” methods: once we control
for the observables (in this case x), P reveals no information about the values of {Y 1, Y 0}. This is
often written as follows:

E
(
Y 1|P, x

)
= E

(
Y 1|x

)
E
(
Y 0|P, x

)
= E

(
Y 0|x

)
In other words, once you condition on x, the expected values of Y 1 and Y 0 do not depend on P .
In other words, re-visiting a term from Chapter 2, once we condition on x, Y 1 and Y 0 are mean
independent of P . Sometimes this is written{

Y 1, Y 0
}
⊥⊥ P |x

where⊥⊥means “independent”. This line simply states “Y 1 and Y 0 are independent of P conditional
on x”.

In essence, what is being said in this assumption is that we can observe and hence control for
all of the factors that systematically shape both P and Y . This is the crucial assumption of the
regression approach to program impact evaluation, as well as matching (the other major “selection
on observables” strategy). If we can measure all of the factors that systematically shape both P
and Y , and hence would allow for a reason why Y might differ between participants (P = 1) and
non-participants (P = 0) aside from the impact of participation, we can control for them.

It is worth revisiting an earlier figure (now presented as Figure 4.2) to clarify what must be
observed under the “selection on observables” assumption. In Figure 4.2, it would be necessary
under this assumption to observe and control for every factor that behaved like ‘X3’, because such
factors influence Y and P . It would not be necessary to control for ‘X1’ because there is no
mechanism by which such factors can differ by participation status P (and hence no way that P
could serve as a proxy for them). The factors in ‘X2’ may influence P , but they do not independently
influence Y . The factors in ‘X3’ are associated with program participation P and hence will differ on
average between participants and non-participants. At the same time, because they also influence
Y , one cannot be sure whether differences in average outcomes between participants and non-
participants reflect participation or differences in ‘X3’ between participants and non-participants.
In some disciplines it is most common to refer to such variables as confounders.

This assumption would not hold if there were some factors that influence both Y and P (i.e.
elements of ‘X3’ from Figure 4.2) and which could not be observed. In that case, regression of Y
on P and the factors that we can observe would not be sufficient to recover an unbiased estimate
of program impact.

At this point we round off the interpretive phase of the discussion by explicitly defining endoge-
nous and exogenous variables. These two terms are frequently used in discussions of statistical
modelling for program impact evaluation (and, more generally, causal analysis).16 In empirical
program impact evaluation they have come to take on several slightly different meanings, but their

16Classically, in mathematics an endogenous variable is simply one determined within a specified system while an
exogenous variable is one determined outside of that system. Take, for instance, the following system:

x1 = x2 − 2 · x3

x3 = x1 + x4

In this system, the endogenous variables are x1 and x3, while the exogenous variables are x2 and x4. Note that, as
is often the case in such systems, the endogenous variables can be solved for in terms of the exogenous variables:

x1 =
x2 − x4

3
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statistical implication is consistent (at least for the purposes of regression modelling). Often, in the
context endogenous means a variable subject to or influenced by individual choice. Behaviors and
outcomes that reflect or are influenced by personal choices are, of course, driven by myriad char-
acteristics of the individual and the larger environment within which they make decisions, many
of which influence other choices but only some of which can be observed and hence controlled for
in a regression. For instance, our level of motivation probably influences many behavioral choices
(e.g. does an individual make good nutritional choices for their child?) and outcomes (e.g. their
child’s health). On the other hand, some variables probably are not subject to individual choice.
For instance, in many lower income societies whether a child is a twin is probably less subject to
the behavioral influences of their parents.17

Let us consider what this might mean in a regression context. Suppose that we are interested
in understanding the determinants of height-for-age in a poor society, which we will denote, as a
variable and for brevity sake, as HFA. Clearly HFA reflects many health investments, shocks,
etc., each of which are determined at least in part by the observed and unobserved characteristics of
a child and their parents. It also might be determined in part by child nutrition (which we denote
as a variable by NTR) and twinning (which we denote as a variable by TWN and which could
conceivably influence HFA in a number of ways). Consider two separate regression specifications:

HFA = γ0 + γ1 ·NTR+ ε

HFA = δ0 + δ1 · TWN + υ

Clearly, ε and υ contain all sorts of determinants of HFA that are, for the purposes of these
regressions, unobserved. Aside from the obvious omission in each regression18, these two error
terms contain all sorts of characteristics of the child and their family that have direct and indirect
influence on HFA.

We have suggested that NTR is a behavioral choice (i.e. it fits our working definition of endo-
geneity to this point). In other words, it likely depends on observed and unobserved characteristics
of a child and their family. But we have also just suggested that these sorts of variables are in ε.
This means that NTR and ε are likely correlated:

corr (NTR, ε) 6= 0

This is a familiar condition from the preceding discussion: it means that a regression of HFA on
NTR will not yield an estimate of γ1 that reflects the causal effect of NTR on HFA. It is a natural
consequence of NTR being a behavioral choice.

The condition
corr (NTR, ε) 6= 0

also serves as the foundation for the more general definition of endogeneity: an endogenous variable
is one correlated with unobserved determinants of some outcome of interest. This is more general

x3 =
x2 + 2 · x4

3

In other words, the endogenous variables are ultimately just a function of the exogenous variables. The last two
equations (in which we solved for the endogenous variables in terms of the exogenous variables) are called the
reduced forms for x1 and x2.

17In wealthier societies the variation in twinning across the population is likely influenced in part by fertility
treatment and other purposeful health inputs, which are behavioral choices associated with all sorts of observed and
unobserved family characteristics. Admittedly, however, fertility treatments are becoming more common among the
middle and upper classes even in some quite poor societies.

18To the extent that NTR and TWN actually influence HFA, TWN is relegated to ε and NUTR is in υ.
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than the definition that focuses on the variable in question being subject to individual choice: a
variable can be correlated with the unobserved determinants of an outcome for lots of reasons. For
instance, even if it were not an individual choice child nutrition might be correlated with unobserved
factors (such as a community level social norms for protecting child welfare) beyond the control of
the individual that might also influence HFA.

As we have approached it, TWN is not a choice variable. By the logic initially applied to NTR,
one could argue that

corr (TWN, υ) = 0

This is also the more general definition of exogeneity: for a given outcome of interest, an exoge-
nous variable is one that is not correlated with unobserved variables that influence that outcome.
Whether a given variable is truly exogenous is of course never certain.19 For instance, it is possi-
ble that TWN is partly the result of unobserved community-level environmental factors that also
shape HFA.20

A variable that is endogenous in one regression context can potentially be considered exogenous
in a more richly specified model. Earlier, we considered a situation where the true population
regression determining an outcome Y was given by

Y = β0 + β1 · P + β2 · x+ ε

Crucially, we assumed that ε contained purely idiosyncratic determinants of Y in the sense that

corr (P, ε) = 0

Regression of Y on P alone did not yield an estimate of program impact that was causal to the
extent that

1. x had an impact on Y (i.e. β2 6= 0);

2. x and P were correlated.

Hence, in a regression of Y on P alone P might be an endogenous variable because x, with which it
is correlated, is in the error term for that regression. Hence, for the purpose simply of regressing Y
on P alone, P would qualify as an endogenous regressor. However, it could be rendered exogenous
simply by including x as a regressor.21 A regressor of interest is thus exogenous if the “selection
on observables” assumption is satisfied. Endogeneity and exogeneity are thus natural concepts for
the consideration of this assumption, which brings us back to the original assumption of this class
of impact evaluation models.

How reasonable is the “selection on observables” assumption? This question has been debated
fiercely. Some sweeping patterns have been suggested (e.g. Heckman, Ichimura and Todd (1997a)
find that the assumption is more plausible when there are strong reasons to believe that partic-
ipants and non-participants have similar background circumstances). It does seem reasonable to
suggest that this is a strong assumption. Part of the reason for suspecting this is that many of the
factors that probably systematically influence program participation and outcomes of interest are
intrinsically unobservable. For instance, thus far we have sometimes focused on “motivation” as a

19As we will see in subsequent chapters, there are statistical tests of exogeneity, but they are just that: statistical
tests. They do not prove exogeneity in the pure sense.

20And, as we have argued, in some societies it is likely influenced by behavioral choices like fertility treatments.
21As we will see in the discussion of “bad” controls below, we will see that P being truly endogenous, and hence

the estimated coefficient of P representing true program impact, also depends on the exogeneity of x. However, for
the moment we set this complication aside.
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particular confounder. However, motivation cannot really be observed. There are probably many
analogous emotional and psychological characteristics and values of individuals that shape both
their program participation decisions and their outcomes.

Perhaps it might be reasonable to link the credibility of the “selection on observables” assump-
tion to the degree to which program enrollment variation within the estimation sample is driven
by some sort of criteria beyond the control of the individual, as opposed to the discretion of the
individuals themselves. For instance, Angrist (1998) considered the role of voluntary military ser-
vice on later life earnings. In that application, estimation was restricted to a sample of voluntary
military applicants. What separated those who actually served from those who did not within this
sample was then clear (from an empirical standpoint) enlistment criteria established by the military
mostly rooted in individual background characteristics and readily observable by the researcher.
If, however, eventual enlistment among applicants was ultimately more of an individual decision, it
would likely have been driven by factors (like motivation, courage, etc.) unlikely to be intrinsically
observable, making the “selection on observables” assumption less plausible.

We now conclude by briefly extending the omitted variable bias discussion to the limited depen-
dent variable setting. The limited dependent variable case is, as one might expect from the term,
one in which the variation in Y is limited in nature. We consider the basic case where Y takes on
only two values, 1 and 0. These can be thought of as corresponding to binary outcome possibilities.
For instance, many of the behaviors and outcomes recorded in health interview surveys are binary
in nature: an individual either did or did not visit a clinic, get their children immunized, expe-
rience a symptom, use contraception, get pregnant, etc. Nor is interest in binary behaviors and
outcomes limited to health: individuals do or do not graduate school, work, receive fringe benefits,
commit crimes, etc.22 Since a binary outcome captures simply whether something happens or not,
the typical regression modelling goal is to capture the role that P and x play in determining the
probability that the binary outcome event occurs.

Confronted with a binary outcome, one could still resort to least squares regression of the
limited dependent variable Y on P and x. While this approach, called the linear probability
model, has its drawbacks, it also has a certain appeal. The drawbacks include faulty standard error
estimates and the possibility of predicted probabilities above 1 or below 0 when the probability
of an event occurring can by definition never be outside of those bounds. On the other hand, the
linear probability model is a relatively straightforward approach that involves few assumptions and
can be readily integrated into other impact evaluation methods, such as the within estimators or
linear instrumental variables approaches that will be considered in subsequent chapters.

Perhaps its biggest advantage for the present discussion is that the estimated coefficients are
readily interpretable in probability terms. For instance, suppose that Y can take on values 0 or 1.
A simple linear probability model analogous to the first regression model considered in this section
would involve least squares regression of Y on P . This estimates the parameters of the model

Y = β0 + β1 · P + ε

In other words, the model is exactly the same as that at the outset of this section. All that has
changed is that the variation in Y is constrained so that Y can only take on values 0 or 1. The
estimate β̂1 arising from least squares regression of Y on P has a direct interpretation in probability
terms: it is the increase in the probability that Y = 1 that would occur when P switches from 0 to
1. This is the interpretation of program impact when dealing with an outcome constrained to be

22Though our focus is on the binary outcome, the basic insights extend to other limited dependent variable out-
comes. For example, multinomial outcomes involve choice between mutually exclusive and exhaustive categories. As
another example, count outcomes capture the number of integer times some event occurs.
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either 0 or 1: the degree to which participation influences the probability of an outcome of interest
occurring. In terms of unbiasedness or consistency, all of the conclusions reached about the least
squares estimator in the more general case (where Y is a continuous variable) carry over to the
limited dependent case where Y is binary.

We will thus use results from the linear probability model as a reference for what program
impact should be. However, we will use this only for comparison purposes as our main focus will
be the popular logit binary regression model. We focus on the logit model because it allows us to
introduce an example of the application of the regression approach to a non-linear model.

As with the linear probability model, we consider a binary outcome of interest Y that can take
on values 1 or 0. Underlying the observed binary outcomes are “indirect utility functions” with
continuous outcomes:

V 1∗ = γ0 + γ1 · P + γ2 · x+ ε1

V 0∗ = φ0 + φ1 · P + φ2 · x+ ε0

V 1∗ is the indirect utility or welfare that is experienced when the observed outcome Y = 1, given
P , x and a random element to utility ε1. A similar interpretation obtains for V 0∗ when Y = 0. To
begin with, Y = 1 if the indirect utility from making that choice is greater than or equal to the
indirect utility from not doing so. Thus, we observe Y = 1 if:

V 1∗ ≥ V 0∗

or
γ0 + γ1 · P + γ2 · x+ ε1 ≥ φ0 + φ1 · P + φ2 · x+ ε0

or, re-arranging and collecting terms,

ε1 − ε0 ≥ (φ0 − γ0) + (φ1 − γ1) · P + (φ2 − γ2) · x

If we multiply both sides by -1, we have

ε0 − ε1 ≤ (γ0 − φ0) + (γ1 − φ1) · P + (γ2 − φ2) · x

or, simplifying further,
ε0 − ε1 ≤ β0 + β1 · P + β2 · x

where βk = (γk − φk) for k = 0, 1, 2 just collects the φ and γ terms.
The random elements to the indirect utility functions are key to casting the regression in terms

of the probability that the outcome Y = 1 would occur. Specifically, we have

Pr (Y = 1|P, x) = Pr (ε0 − ε1 ≤ β0 + β1 · P + β2 · x)

Notice that this means that the probability that Y = 1 is just the cumulative probability of the
random variable ε0 − ε1 at β0 + β1 · P + β2 · x. Parametric23 binary choice regression models like

23Parametric is one of those terms that can mean different things in different contexts in statistical research, but
usually somehow appeals to the idea that a particular functional form is assumed. Thus, in this context we apply the
term parametric to binary choice models that assume a specific distributional assumption for ε0 − ε1. Logit is not
the inevitable outcome of the parametric approach to binary regression modelling. For instance, assuming ε0 − ε1
is normally distributed gives rise to the probit model. Nor is the parametric approach inevitable. Non-parametric
modelling is an exciting emergent area of limited dependent variable regression modelling. To some extent, the linear
probability model can be seen as an example of this. A discussion of more sophisticated non-parametric modelling
would represent an un-necessary digression from the manual.
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logit operationalize an actual regression form by making some assumption about the probability
distribution of ε0 − ε1.

The logit model assumes that the εs are distributed as Type-I Extreme Value.24 Though this
may sound like a very exotic distribution, it is shaped roughly like the Normal distribution but with
higher kurtosis (i.e. fatter tails) and, depending on the values of the parameters of the distribution,
some degree of skewness. The reason this distribution has attracted so much attention in this
context is that it turns out that the distribution of the difference of two Type-I Extreme Value
random variables has a cumulative density given by the logistic function. Thus, if Z and W are
Type-I Extreme Value Distributed random variables,

Pr (Z −W ≤ c) =
exp (c)

1 + exp (c)

In the era when binary choice models were under development computer resources were dear, and
such a computationally simple form had great appeal.

For present purposes, assuming the εs are Type-I Extreme Value Distributed leads to the choice
probability

Pr (Y = 1|P, x) =
exp (β0 + β1 · P + β2 · x)

1 + exp (β0 + β1 · P + β2 · x)

Since Y can assume values of only 1 and 0, Pr(Y = 1) + Pr(Y = 0) = 1 and, therefore, Pr(Y =
0) = 1− Pr(Y = 1). From this simple truth, we can obtain the other choice probability

Pr (Y = 0|P, x) = 1− Pr (Y = 1|P, x) = 1− exp (β0 + β1 · P + β2 · x)

1 + exp (β0 + β1 · P + β2 · x)

=
1

1 + exp (β0 + β1 · P + β2 · x)

We now turn to estimation of this model.
The data requirements are essentially the same as in the earlier ordinary least squares estimation

case. Suppose that we have a sample of N individuals. For each (indexed by i) we observe
{Yi, Pi, xi}. Since the regression outcome is cast in terms of the probabilities that certain events
occur (namely that Yi = 1 or Yi = 0), the most popular method of estimation is by maximum
likelihood. Basically, maximum likelihood estimation involves choosing the values for β0, β1 and
β2 that maximize the probability of the observed sequence of values (0 or 1) for Y1, Y2, ..., YN .

Formally, individual i’s probability for their outcome Yi is

Pri (Yi|Pi, xi, β0, β1, β2) = Pri (Yi = 1|Pi, xi, β0, β1, β2)Yi · Pri (Yi = 0|Pi, xi, β0, β1, β2)(1−Yi)

=

(
exp (β0 + β1 · Pi + β2 · xi)

1 + exp (β0 + β1 · Pi + β2 · xi)

)Yi
·
(

1

1 + exp (β0 + β1 · Pi + β2 · xi)

)(1−Yi)

Notice that their choice probability will depend on their choice Yi in the sense that it determines
whether their contribution to the likelihood takes the form of Pr(Yi = 1|·) or Pr(Yi = 0|·).

As the probability of their observed outcome Yi given their program participation Pi, character-
istic xi and the parameters β0, β1 and β2, Pri (Yi|Pi, xi, β0, β1, β2) is the individual i’s contribution

24Sometimes in developing the logit model reference is made to the Gumbel or log-Weibull distribution. They refer
to the same distribution. The “Extreme Value” name is derived from the fact that these distributions are often used
to model the probability distribution of the maximum value of series of random variables.
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to the likelihood function. The overall likelihood L(β0, β1, β2) is simply the product of such
probabilities for all individuals in the sample of N individuals:

L (β0, β1, β2) = Pr1 (Y1|P1, x1, β0, β1, β2) ·Pr2 (Y2|P2, x2, β0, β1, β2) · ... ·PrN (YN |PN , xN , β0, β1, β2)

N∏
i=1

Pri (Yi|Pi, xi, β0, β1, β2)

Maximum likelihood estimation then involves finding the values of β0, β1 and β2 that maximize
the value of the likelihood function. Intuitively, maximum likelihood estimation seeks to find
values for β0, β1 and β2 that make the observed sample sequence of outcomes [Y1, Y2, ..., YN ] most
likely to have occurred given the corresponding observed sample sequences [P1, P2, ...., PN ] and
[x1, x2, ..., xN ]. Simply put, it seeks parameter estimates under which what you observe in your
sample is most likely to have occurred. Looked at from this standpoint, the phrase “maximum
likelihood” is intuitively quite sensible.

Figure 4.3: Logit Log Likelihood

In practice, the log-likelihood (usually denoted by L(β0, β1, β2) produced simply by taking
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the natural logarithm of the likelihood function) is maximized:

L (β0, β1, β2) = ln {L (β0, β1, β2)}

=
N∑
i=1

lnPri (Yi|Pi, xi, β0, β1, β2)

There are several reasons for focusing on the log-likelihood, but the main one is computational
simplicity. For instance, if there were many individuals in the sample (i.e. a large N), then

L (β0, β1, β2) =
N∏
i=1

Pri (Yi|Pi, xi, β0, β1, β2)

is the product of a very large number of small numbers (since probabilities must be no smaller than
0 and no larger than 1) and hence a very small number itself. This risks an under-flow error25 on
many computers.

To get some visual sense of this, in Figure 4.3 we illustrate the log-likelihood “surface” for the
case where we seek estimates β̂0 and β̂1 of β0 and β1, respectively. The easiest way to motivate this
hypothetical case is simply to assume that β3 = 0 and that xi thus is not included as a regressor
in the model. We cut the problem down to just two parameters, β0 and β1, simply because we
cannot illustrate the log-likelihood surface in four dimensions, which would be what we were facing
if we assumed that we were estimating β3 as well. The focus on estimating just two parameters is
a temporary device which we employ for discussing Figure 4.3.

In Figure 4.3 we have a likelihood surface. Notice that it has a single defined “summit” or
“peak”. Log-likelihood functions with just one “peak” such as this are known as globally concave.
This is a fancy term that basically means that there is only one set of estimate values {β̂0, β̂1} for
which the log-likelihood function has a “peak”. Put slightly differently, there is just one “global”
peak, and not many “local” peaks. Maximum likelihood estimation procedures usually involve an
iterative approach to estimation whereby in each iteration the values of the parameter estimates {β̂0,
β̂1} are updated by increasing or decreasing their value. The adjustment to their values is whatever
adjustments increase the value of the log-likelihood (remember, the goal here is to maximize the
log-likelihood). The estimation process ends when there is no change to the values of {β̂0, β̂1} that
could improve the log-likelihood value. Clearly, the iterative approach would thus require adopting
some initial values for the parameter estimates {β̂0, β̂1}. When there is a global maximum as in
Figure 4.3, the starting point does not matter: whatever the starting point, incremental changes in
the parameter estimates {β̂0, β̂1} in one direction will ultimately yield estimate values at the global
maximum for the log-likelihood. Matters become a bit more complicated when there are many
peaks (i.e. local maximums): then, the starting point for the parameter estimates {β̂0, β̂1} might
be quite consequential, since different starting points can lead to different peaks.26 Fortunately, the
simple logit model is globally concave, and so this is not concern in the context of our discussion
of binary regression.

The maximum likelihood estimator has a number of properties that will be relevant to later
discussions in this manual. For instance, one important one is that maximum likelihood estimates

25A situation where one attempts to work with a number smaller than the computer is capable of handling.
26This becomes a more likely possibility with more complicated models, for which global concavity might not hold.

Dealing with this problem has led to the introduction of techniques such as simulated annealing which is simply
a comparatively efficient method of identifying a global maximum. Of course, a less efficient but in many problems
probably just as effective (in terms of final product) method it to re-estimate with many different candidate starting
values for the parameter estimates.
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(in this application β̂0, β̂1 and β̂2) are asymptotically normal, a very handy property that we will
shortly exploit. However, it also has pitfalls. It typically requires assumptions (in the sense that
some specific probability distribution must be adopted to operationalize the probabilities that are
the foundation of the likelihood function) that some regard as strong. Depending on the context
and particular assumption, inferences might not be very robust to violations of those assumptions.
(Translation: the assumptions are really important and if they are wrong the estimates may be
very misleading.) It can also have some undesirable numerical properties, such as the “incidental
parameters problem” that we will discuss in the next chapter.

We conclude this discussion with a numerical example of a logit regression and the appropriate
manner for calculating program impact from it. This example is captured in STATA do-file 4.2.do.
In this example, we carry over much of the example from STATA do-file 4.1.do. Once again, this
example considers the consequences of regressing Y on P when the “true” model is

Y ∗ = β1 + β2 · P + β3 · x+ ε

Specifically, suppose that we randomly generate 30,000 observations based on these two assumed
equations:

Y ∗ = 1− .5 · P + 1.5 · x+ e

where e ∼ N(0,25) and x ∼ N(0,4). P equals 1 if

.5 · x+ ep > 0

where ep ∼ N(0,36). x is thus a determinant of Y and P , the exact circumstance to which models
relying on a selection on observables assumption appeal.

The main innovation over STATA do-file 4.1.do is that the observed Y is now binary. Specifically,
for each observation i, we set Yi as follows:

Yi =

{
1 if Y ∗i > 0
0 otherwise

We display the result in Output 4.5. Y takes on the value 0 for 41.82 percent of the sample, while
it is 1 for the remaining 58.18 percent.

STATA Output 4.5 (4.2.do)

. * The binary outcome

. tab Y

Y Freq. Percent Cum.

0 12,545 41.82 41.82
1 17,455 58.18 100.00

Total 30,000 100.00

We first estimate the linear probability model. This is presented in Output 4.6. This involves
estimation of the “correct” model (i.e. regressing Y on P and x) by ordinary least squares. The
estimate of the coefficient of P (.0396309) is thus an unbiased and consistent estimate of program
impact. In other words, a correct estimate of program impact should suggest that the probability
that Y equals 1 should increase around 3.96 percentage points.
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Next estimate the full model by regressing Y on P and x via logit regression using maximum
likelihood regression. The results are shown in Output 4.7. The estimates β̂0, β̂1 and β̂2 are,
respectively, .3061813, .1967581 and .499398. It cannot be emphasized strongly enough, however,
that none of these are really directly interpretable since none are in the metric of interest in a logit
regression, the probability that the outcome of interest Y equals 1 given program participation P
and characteristic x (i.e. Pr(Y = 1|P,X)). In particular for this context, β̂1 is not the impact of
program participation on the probability that outcome Y occurs. Plugging in the estimates this
probability is, as we have seen, simply

P̂ r (Y = 1|P,X) =
exp

(
β̂0 + β̂1 · P + β̂2 · x

)
1 + exp

(
β̂0 + β̂1 · P + β̂2 · x

)
or, substituting in the actual estimate values,

P̂ r (Y = 1|P,X) =
exp (.3061813 + .1967581 · P + .499398 · x)

1 + exp (.3061813 + .1967581 · P + .499398 · x)

Thus, the parameter estimates are not directly behaviorally interpretable but instead work through
the logistic function.

STATA Output 4.6 (4.2.do)

. * Linear Regression y on P and x

. reg Y P x

Source SS df MS Number of obs = 30000
F( 2, 29997) = 3079.61

Model 1243.40331 2 621.701657 Prob > F = 0.0000
Residual 6055.69585 29997 .201876716 R-squared = 0.1704

Adj R-squared = 0.1703
Total 7299.09917 29999 .243311416 Root MSE = .44931

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .0396309 .0052319 7.57 0.000 .0293762 .0498857
x .1002254 .0013104 76.48 0.000 .0976569 .1027938

_cons .5625395 .0036772 152.98 0.000 .555332 .5697469

The goal of the logit regression is to understand how the regressors P and X work to shape the
probability that the outcome Y equals 1. Our main regressor of interest is P , which is itself binary.
The impact of P on the probability that Y equals 1 is captured by comparing that probability
when P = 1 with its value when P = 0:

P̂ r (Y = 1|P = 1, X)− P̂ r (Y = 1|P = 0, X)

This is the marginal effect of P on P̂ r(Y = 1|P, x) and it is the actual estimate of program
impact. In practice, this is computed for each of the i = 1, ..., N individuals in our sample at their
various values for xi (remember that P̂ r(Y = 1|P, x) depends on the value of x as well). The
marginal effects for each of these i = 1, ..., N individuals is then averaged across them to form
an overall average marginal effect estimate for the sample.27 When we perform this exercise with

27An alternative might simply be to calculate one marginal effect evaluated at the average of x, but this appears
to be less common practice.
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this example (see STATA do-file 4.2.do for the calculations), this leads to an average marginal
effect estimate of .0397071. In other words, participation in the program appears to increase the
probability that Y equals 1 by just under 4 percentage points. Reassuringly, this is right in the
neighborhood of the benchmark estimate of program impact of 3.96 percentage points provided by
the linear probability model.

STATA Output 4.7 (4.2.do)

. * Logit regressing y on P and x

. logit Y P x

Iteration 0: log likelihood = -20390.8
Iteration 1: log likelihood = -17607.838
Iteration 2: log likelihood = -17584.319
Iteration 3: log likelihood = -17584.285
Iteration 4: log likelihood = -17584.285

Logistic regression Number of obs = 30000
LR chi2(2) = 5613.03
Prob > chi2 = 0.0000

Log likelihood = -17584.285 Pseudo R2 = 0.1376

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P .1967581 .0258382 7.62 0.000 .1461163 .2474
x .499398 .0077492 64.45 0.000 .4842098 .5145862

_cons .3061813 .0181661 16.85 0.000 .2705765 .3417861

STATA Output 4.8 (4.2.do)

. * Logit regressing y on P alone

. logit Y P

Iteration 0: log likelihood = -20390.8
Iteration 1: log likelihood = -20262.266
Iteration 2: log likelihood = -20262.234
Iteration 3: log likelihood = -20262.234

Logistic regression Number of obs = 30000
LR chi2(1) = 257.13
Prob > chi2 = 0.0000

Log likelihood = -20262.234 Pseudo R2 = 0.0063

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P .3763136 .0235249 16.00 0.000 .3302056 .4224216
_cons .1458089 .0163407 8.92 0.000 .1137817 .1778361

Finally, we attempt to regress Y on P alone by logit. There is reason to believe this might cause
problems again, given that x influences both P and Y . However, this is not necessarily evident
from the regression output (see Output 4.8). While it is true the coefficient on P is larger in
magnitude than when Y was regressed on P and x (.3763136 versus .1967581) it is not clear what
this means for the marginal effect via the highly non-linear logistic function. True understanding of
the implication of excluding x requires re-calculation of the marginal effect of program participation
P on the probability that Y equals 1 using this new fitted model. When we re-compute the marginal
effect with this new model, the average value is now .0912561. In other words, excluding x has
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nearly doubled our estimate of the impact of program participation.
Unlike the linear ordinary least squares case, for which the mathematics are comparatively

easy, it is not straightforward to demonstrate analytically omitted variable bias in the context of
marginal effects computation with the logistic function. Nonetheless, this example demonstrates
that it clearly is a concern even in the limited dependent variable setting. The reason for the bias
is much the same: the exclusion of x has forced P to serve the two roles of a control for itself
(which we want it to do) and a proxy for x (which we do not want). The result is an estimate of
the marginal effect of P on the probability that Y equals 1 that is muddied since it partly reflects
the effect of x on Y .

Moreover, the logic of the regression approach to selection on observables obtains in the limited
dependent variable setting: the omitted variable bias can be remedied simply by including x as
a regressor. Whether this fully remedies the omitted variable bias problem depends crucially on
whether x is the only variable that systematically influences both the outcome Y and program
participation P .

4.1.2 Multiple Regression

We now briefly digress to consider multiple regression models with many controls. The preceding
discussion considered the possibility of a single confounder (x). While that discussion technically
revolved around multiple regression (since regression of Y on P and x does involve multiple re-
gressors, namely P and x), this was a somewhat restrictive example in the sense that there were
only two potential controls. In reality, there are probably many factors that shape both program
participation and the outcome of interest.

We now relax the framework of the preceding discussion to consider many potential controls
for factors that might influence both Y and P . For concreteness, we consider 5 such factors
(x1, x2, ..., x5). The choice of 5 is arbitrary. We extend thusly for two reasons. First, we establish
that partial control only for some of the elements of x1, x2, ..., x5 is not sufficient to recover an
unbiased estimate of program impact. This will highlight how strong an assumption “selection on
observables” can be: in general, we must control for all factors that influence both Y and P to
insure unbiased estimation of program impact. Second, we introduce a key property of multiple
regression that can be very important for understanding the behavior of multiple regression models,
the regression anatomy property.

The multiple regression framework with more than one potential confounder is mathematically
more complicated to discuss than the case of the single confounder.28 In general, analysis of the
multiple regression case relies on linear algebra, a mathematical approach beyond the scope of the
manual.

A simple point can still be made, however, with simple math. Suppose that the true population
regression model governing Y is given by

Y = β0 + β1 · P + β2 · x1 + β3 · x2 + β4 · x3 + β5 · x4 + β6 · x5 + ε

where we assume ε is mean independent of all observed regressors (i.e. the P s and xs). We now have
program participation status (P ) and 5 potential confounders (x1, ..., x5). Suppose that we attempt
to estimate the impact of the program P on the outcome Y (in other words, β1) simply by regressing
Y on P alone. To fix ideas, suppose that we have data in which we observe {Yi, Pi, x1i, x2i, ..., x5i}.

28Indeed, the mathematics grows more complex with more than one regressor, but our simple discussion of omitted
variable bias in the preceding subsection used the single regressor case (i.e. regressing Y on P alone) to form the
basis for the mathematical discussion of omitted variable bias.
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Our estimate of β1, β̂1, from regression of Y on P alone is once again given by

β̂1 =

∑N
i=1

(
Pi − P

)
· Yi∑N

i=1

(
Pi − P

)2
To examine the expectation of this estimate, E(β̂1), we substitute in the true data generating
process behind Yi:
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Using the same math as in the last subsection, we have
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= β1 + β2 · E (γ̂11) + β3 · E (γ̂12) + β4 · E (γ̂13) + β5 · E (γ̂14) + β6 · E (γ̂15)

where γ̂1j is an estimate of the slope coefficient γ1j from xj = γ0j +γ1j ·P +υj , where j = 1, 2, ..., 5.
This is a generalization of the omitted variable bias result from the last subsection to the

more general multiple omitted variable (i.e. potential confounder) setting. There are three major
conclusions to draw from this exercise:

1. When one regresses Y on P alone, the estimate of β1, β̂1, is still biased to the extent that
any of the omitted regressors x1, ..., x5 are correlated with Y and P ;
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2. The direction of the bias is much harder to gauge a priori, since it depends on the net influence
of the biases introduced by all of the omitted variables;

3. Assuming that all of x1, ..., x5 are related to Y and P , recovering an unbiased estimate of β1
requires controlling for all of the regressors x1, ..., x5.

The result from the simple case of a single omitted variable thus generalizes, but the resulting bias
is more complicated in terms of magnitude and direction since it depends on the net bias across all
of the omitted regressors.

A numerical example is perhaps in order. The example is to be found in STATA do-file 4.3.do.
In that .do file we draw 50,000 observations as follows. First, the overall data generating process
is given by

Yi = 1 + .5 · Pi + 1.5 · x1i + 1.3 · x2i + .5 · x3i + 1 · x4i − .5 · x5i + ei

where ei ∼ N(0,25) is independent of x1i, x2i, ..., x5i and ePi (described below), xji ∼ N(0,4), and
program participation Pi equals 1 if

−.5 · x1i + x2i − 1.5 · x3i + 2 · x4i + 4 · x5i + ePi > 0

and 0 otherwise (and ePi ∼ N(0,144)).29 We hence have preserved and extended the basic setup
from STATA do-file 4.1.do. There are now five potential controls x1i, x2i, ..., x5i. They each shape
both Y and P . The fact that ei is independent of x1i, x2i, ..., x5i and ePi means that it is also
independent of Pi. Once again, true program impact is .5.

STATA Output 4.9 (4.3.do)

. * Regressing Y on P and x1-x5

.

. reg Y P x*

Source SS df MS Number of obs = 50000
F( 6, 49993) = 7192.22

Model 1083600.01 6 180600.002 Prob > F = 0.0000
Residual 1255346.73 49993 25.1104501 R-squared = 0.4633

Adj R-squared = 0.4632
Total 2338946.74 49999 46.7798705 Root MSE = 5.011

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .5188164 .051738 10.03 0.000 .4174093 .6202235
x1 1.490441 .0112458 132.53 0.000 1.468399 1.512483
x2 1.292802 .0113638 113.77 0.000 1.270529 1.315075
x3 .5112961 .0113817 44.92 0.000 .4889879 .5336044
x4 .9998604 .0115517 86.56 0.000 .9772189 1.022502
x5 -.5005947 .0123521 -40.53 0.000 -.5248049 -.4763846

_cons .9789824 .0341271 28.69 0.000 .9120928 1.045872

In Output 4.9 we provide results from regression of Y on P and x1, ..., x5. The estimate of
the coefficient on program participation P is .5188164, which is right in the near neighborhood of
the true value of .5. The xs are significant predictors of Y , as we would expect by construction.

29The specific values of the data generating process were, as always, rather arbitrarily chosen. As with all of the
.do files, we encourage the reader to study results under alternative values.



4.1. REGRESSION 99

Moreover, the estimates of their coefficients are roughly in line with what we would expect, given
their assumed values used to generate the data.

STATA Output 4.10 (4.3.do)

. * Regressing Y on just P and x2, x4, x5

.

. reg Y P x2 x4 x5

Source SS df MS Number of obs = 50000
F( 4, 49995) = 4272.69

Model 595869.311 4 148967.328 Prob > F = 0.0000
Residual 1743077.43 49995 34.8650351 R-squared = 0.2548

Adj R-squared = 0.2547
Total 2338946.74 49999 46.7798705 Root MSE = 5.9047

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P -.2856236 .0598212 -4.77 0.000 -.4028738 -.1683734
x2 1.324834 .0133844 98.98 0.000 1.2986 1.351068
x4 1.049367 .0135961 77.18 0.000 1.022718 1.076015
x5 -.41929 .0145117 -28.89 0.000 -.447733 -.390847

_cons 1.365239 .0397911 34.31 0.000 1.287248 1.44323

STATA Output 4.11 (4.3.do)

. * Regressing Y on just P and x1, x3, x5

.

. reg Y P x1 x3 x5

Source SS df MS Number of obs = 50000
F( 4, 49995) = 4175.10

Model 585667.707 4 146416.927 Prob > F = 0.0000
Residual 1753279.04 49995 35.0690876 R-squared = 0.2504

Adj R-squared = 0.2503
Total 2338946.74 49999 46.7798705 Root MSE = 5.9219

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 2.245759 .059019 38.05 0.000 2.130081 2.361437
x1 1.522749 .013287 114.60 0.000 1.496707 1.548792
x3 .5878619 .0134327 43.76 0.000 .5615337 .6141901
x5 -.6770191 .0145045 -46.68 0.000 -.705448 -.6485902

_cons .1219913 .0395227 3.09 0.002 .0445264 .1994563

In Output 4.10 and Output 4.11, we provide results when Y is regressed on P and a subset of
the xs. Specifically, Output 4.10 provides the coefficient estimates when Y is regressed on just P
and x2, x4 and x5. The estimated coefficient on P is now -.2856236, wildly off from the true value
of .5. Indeed, the program would now seem to have a negative effect on the outcome of interest Y !
This demonstrates that correcting for some but not all of the factors x that influence both Y and
P would not be sufficient to recover an unbiased estimate of program impact. In Output 4.11 we
present estimation results for the regression of Y on P and x1, x3 and x5. The estimated program
impact is now 2.245759, more than four times the true value of .5. Comparing these results with
those in Output 4.10 demonstrates that, not only will bias remain if one fails to correct for all of



100 CHAPTER 4. SELECTION ON OBSERVABLES

the factors x that shape both program participation P and the outcome Y , but that the direction
of the bias can depend on which particular confounders x are excluded from the regression.

We conclude this subsection with a brief digression to present the “regression anatomy for-
mula”.30 This is a property of multiple regressions that the authors have found quite useful for
understanding various phenomena involving them. The property itself is quite simple. Suppose
that one regresses Y on P and a series of confounders x1, x2, ..., x5. Call β̂1 the resulting estimated
coefficient on P . The same estimate can be recovered by following these steps:

1. Regress P on all of the regressors x1, x2, ..., x5. Thus, continuing our specific example, regress
P on x1, x2, x3, x4 and x5 to estimate the coefficients µ0, ..., µ5 of the model

Pi = µ0 + µ1 · x1i + µ2 · x2i + µ3 · x3i + µ4 · x4i + µ5 · x5i + ζi

This simply captures the variation in P driven by the observed confounders x and the re-
maining variation (ζi) not explained by the xs;

2. Compute predicted program participation P̂i for each observation:

P̂i = µ̂0 + µ̂1 · x1i + µ̂2 · x2i + µ̂3 · x3i + µ̂4 · x4i + µ̂5 · x5i

This is simply the value of P predicted by the observed confounders x and its variation across
a sample of N individuals is the variation in P in that sample associated with variation in
the confounders x;

3. Compute the predicted residuals ˆPRESi

ˆPRESi = Pi − P̂i

This is simply the portion of P not associated with x. Its variation across the sample is the
variation in P not associated with variation in x;

4. Regress Y on ˆPRESi .

The regression of Y on ˆPRESi estimates the model

Yi = ν0 + ν1 · ˆPRESi + ϑi

The ordinary least squares estimator for this model is

ν̂1 =

∑N
i=1

(
ˆPRESi − ˆPRESi

)
· Yi

∑N
i=1

(
ˆPRESi − ˆPRESi

)2

=

∑N
i=1

ˆPRESi · Yi∑N
i=1

(
ˆPRESi

)2
The last step exploits the fact that ˆPRES is an ordinary least squares regression residual, hence its
mean

ˆPRESi

30We are unsure of the origin of this term, but it does appear in Angrist and Pischke (2009).
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is zero. This estimate yielded by this estimator actually equals the estimate β̂1 emerging from
estimation of the regression model

Y = β0 + β1 · P + β2 · x1 + β3 · x2 + β4 · x3 + β5 · x4 + β6 · x5 + ε

by regression of Y on P and all of the xs.

STATA Output 4.12 (4.3.do)

. * Regressing P on x1-x5

.

. reg P x*

Source SS df MS Number of obs = 50000
F( 5, 49994) = 3324.55

Model 3119.0354 5 623.80708 Prob > F = 0.0000
Residual 9380.69082 49994 .187636333 R-squared = 0.2495

Adj R-squared = 0.2495
Total 12499.7262 49999 .249999524 Root MSE = .43317

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 -.0124907 .0009705 -12.87 0.000 -.014393 -.0105885
x2 .027836 .0009744 28.57 0.000 .0259262 .0297459
x3 -.040647 .0009669 -42.04 0.000 -.0425422 -.0387518
x4 .0518833 .0009712 53.42 0.000 .0499796 .0537869
x5 .1014909 .0009665 105.01 0.000 .0995966 .1033851

_cons .4974507 .0019373 256.78 0.000 .4936536 .5012478

STATA Output 4.13 (4.3.do)

. * Regressing Y on "Residual P"

.

. reg Y PRES

Source SS df MS Number of obs = 50000
F( 1, 49998) = 54.03

Model 2525.00481 1 2525.00481 Prob > F = 0.0000
Residual 2336421.74 49998 46.730304 R-squared = 0.0011

Adj R-squared = 0.0011
Total 2338946.74 49999 46.7798705 Root MSE = 6.836

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

PRES .5188164 .07058 7.35 0.000 .3804787 .6571541
_cons 1.222157 .0305713 39.98 0.000 1.162237 1.282077

The intuition behind this goes to the heart of what multiple regression actually does. Multiple
regression controls for the interrelationships between regressors to isolate the channel of variation in
each regressor associated with that regressor alone, and not somehow reflective of its relationship
with another regressor. In Output 4.12 and Output 4.13 we extend the example from STATA
do-file 4.3.do to demonstrate the regression anatomy formula. To begin with, in Output 4.12 we
show the estimates from regression P on x1, x2, x3, x4 and x5. We used this fitted model to obtain
predicted program participation and then predicted residual program participation. In Output 4.13
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we show results from regressing Y on the predicted residual program participation (denoted PRES ,
or PRES in the STATA output). Notice that the coefficient on PRES is .5188164. This is exactly
the same coefficient estimate as that obtained for P when regressing Y on P and x1, x2, x3, x4 and
x5 (see Output 4.8).

4.1.3 “Bad” Controls

A key lesson of the past subsection is that failure to control for all factors that influence both the
outcome of interest Y and program participation P will result in a biased estimate of program
impact from the regression of Y on P and whatever potential confounding factors are included. A
natural temptation would be to adopt an “everything and the kitchen sink” approach to covariate
inclusion in program impact evaluation regressions. After all, it is tempting to assume that doing
so is a good insurance strategy against excluding a confounder than influences both Y and P .

Unfortunately, some controls can actually introduce bias. In other words, suppose that you had
a sample of N individuals for whom you observed {Yi, Pi, xi}. The preceding discussion might lead
one to conclude that it would be safer to regress Y on P and x rather than on just P in case x
influences both P and Y . However, if x has certain statistical properties (explained below) one
might actually worsen the regression estimate of the impact of program participation P on Y from
a bias standpoint by introducing x. We call such problematic variables “bad controls” (following
Angrist and Pischke (2009), which provides one of the best discussions of this possibility that we
have seen).

In most of the discussions of the problem of bad controls that the authors have seen (e.g.
Angrist and Pischke 200931) the problem is framed in terms of regressors that are other outcomes
of the experiment the effect of which one is studying. In plain terms, program impact analysis
seeks to estimate the impact of a program on some outcome of interest that that program sought
to influence. The classic definition of a bad control focuses on a regressor that happens to be yet
another outcome that depends on program participation.

Let us consider a simulated example (see do-file 4.4.do). To fix ideas, let us assume that program
participation P is randomly determined. This rules out the possibility that any bias to the estimate
of program impact from a regression of Y on P owing to some intrinsic unobservable associated with
both Y and P . Intuitively, because P is randomly determined participants and non-participants
differ only by their program participation; any differences between them then can be attributed
to their program participation. P does not also serve as a proxy for some other determinant of
the outcome of interest. Therefore, simply regressing Y on P should yield an unbiased estimate of
program impact.

The data generating process involves simulating 50,000 observations. First, program partici-
pation is determined simply by whether a standard normal distributed random variable exceeds
0. We next draw two variables ey and ex from the bivariate normal distribution with correlation
.3. The potential outcomes for the outcome of interest Y (Y 1 and Y 0, represented by Y 1 and
Y 0, respectively, in the do-file 4.4.do since STATA does not allow variable names with explicit
superscripts) are generated as follows:

Y 0 = 1 + ey

Y 1 = 3 + ey

The true average treatment effect is then

E
(
Y 1 − Y 0

)
= E

(
Y 1
)
− E

(
Y 0
)

= E (3 + ey)− E (1 + ey) = 3 + 0− 1− 0 = 2

31Frankly, many of the discussions of bad controls that we have seen simply outline that of Angrist and Pischke
(2009).



4.1. REGRESSION 103

The observed outcome is then Y = P · Y 1 + (1− P ) · Y 0.
We also consider another outcome, X. X is an outcome in the sense that its value depends

on program participation P . Specifically, the potential outcomes X1 and X0 are determined as
follows:

X0 = 1 + ex

X1 = 4 + ex

(Notice that, by logic similar to that in the last paragraph, the true impact of P on X is 3.)
Observed X is then X = P ·X1 + (1− P ) ·X0.

First we regress Y on P . The result is shown in Output 4.14. Unsurprisingly, the estimated
program impact is, at 1.964227, right around the expected program impact of 2. This is a natural
consequence of the randomization of program participation P : it cut off any avenue for omit-
ted variable bias in the regression of Y on P . In particular, the correlation between P and the
unobserved determinant of Y , ey, is essentially 0 at -0.0045 (see Output 4.15).

STATA Output 4.14 (4.4.do)

. reg Y P

Source SS df MS Number of obs = 50000
F( 1, 49998) = 3015.82

Model 48223.5896 1 48223.5896 Prob > F = 0.0000
Residual 799478.746 49998 15.9902145 R-squared = 0.0569

Adj R-squared = 0.0569
Total 847702.335 49999 16.9543858 Root MSE = 3.9988

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 1.964227 .0357675 54.92 0.000 1.894122 2.034331
_cons .9787719 .0251799 38.87 0.000 .929419 1.028125

STATA Output 4.15 (4.4.do)

. corr P ey
(obs=50000)

P ey

P 1.0000
ey -0.0045 1.0000

We then regress Y on P and X, with the results in Output 4.16. The results are quite striking:
the introduction of X as a regressor has resulted in a program impact estimate of 1.062924, half of
the true population program impact32 and half of the previous estimate. This reflects the fact that
the introduction of the regressor X has created a bias to the estimate of program impact where
none had been evident in the simpler regression of Y on P . In other words, the addition of the

32In simulations such as these, one can think of an infinite population of which the 50,000 simulated observations
are akin to a sample and whose outcomes and program participation are determined by the indicated data generating
process.
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regressor X, a move the preceding discussion would suggest might move us closer to a bias free
estimate of program impact, has completely backfired by actually introducing a bias to the estimate
of program impact!

STATA Output 4.16 (4.4.do)

. reg Y P X

Source SS df MS Number of obs = 50000
F( 2, 49997) = 4091.19

Model 119221.309 2 59610.6543 Prob > F = 0.0000
Residual 728481.027 49997 14.5704948 R-squared = 0.1406

Adj R-squared = 0.1406
Total 847702.335 49999 16.9543858 Root MSE = 3.8171

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 1.062924 .0365027 29.12 0.000 .9913784 1.13447
X .2973571 .0042598 69.80 0.000 .2890078 .3057065

_cons .691562 .0243857 28.36 0.000 .6437656 .7393583

Let us begin to unravel what has happened by remembering what it is that generates biased
estimates in a regression context: correlation between a regressor and some unobserved determinant
of the outcome.33 By this logic, the general truth of what has happened should be clear. The
introduction of the regressor X has somehow generated a correlation between P and an unobserved
determinant of Y . Since the only unobserved determinant of Y in this example is ey, this is
tantamount to suggesting that the introduction of X as a regressor has somehow generated a
correlation between P (or, more precisely, the variation in residual P used in the attempt to
identify program impact) and ey where none necessarily exists in the data.

STATA Output 4.17 (4.4.do)

. reg Y PRES

Source SS df MS Number of obs = 50000
F( 1, 49998) = 739.46

Model 12354.6364 1 12354.6364 Prob > F = 0.0000
Residual 835347.699 49998 16.7076223 R-squared = 0.0146

Adj R-squared = 0.0146
Total 847702.335 49999 16.9543858 Root MSE = 4.0875

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

PRES 1.062924 .0390881 27.19 0.000 .9863109 1.139537
_cons 1.952243 .0182798 106.80 0.000 1.916414 1.988071

To see how this is possible, we return to the regression anatomy formula. According to the
regression anatomy formula, regressing Y on P and X is the same as regression Y on PRES , the
predicted residual from the regression of P on X. Given the regression model

P = µ0 + µ1 ·X + ζ

33There is a slightly more complicated path to omitted variable bias in a regression context due to reliance for
estimation on a non-random sample, but that is a subject for a subsequent chapter.
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we have
PRES = P − (µ̂0 + µ̂1 ·X)

where µ̂0 and µ̂1 are the estimates of µ0 and µ1 generated by least squares regression of P on X.
Output 4.17 provides the results from the regression of Y on PRES . At 1.062924, the estimate of
program impact is what was obtained by regressing Y on P and X.

To understand the source of the omitted variable bias in the regression of Y on PRES where
none existed in the regression of Y on P , it is necessary to look more closely at PRES . Least
squares regression attempts to parse the variation in P into two parts: a systematic component
associated with X and another, random component not associated with X. Thus, by construction,
PRES should be uncorrelated with X.

However, that only means that PRES should be uncorrelated with X as a whole. It need not be
uncorrelated with the components of X. In particular, PRES could be correlated with ex. Indeed,
the regression exercise creates a natural avenue by which PRES depends on ex. To see this, let us
substitute in for X:

PRES = P − (µ̂0 + µ̂1 ·X)

= P −
(
µ̂0 + µ̂1 ·

(
P ·X1 + (1− P ) ·X0

))
= P − (µ̂0 + µ̂1 · (P · (4 + ex) + (1− P ) · (1 + ex)))

= P − µ̂0 − µ̂1 · P · 4− µ̂1 · P · ex− µ̂1 · 1− µ̂1 · ex+ µ̂1 · P · 1 + µ̂1 · P · ex

= P − µ̂0 − µ̂1 · 3 · P − µ̂1 − µ̂1 · ex

Thus, ex is a determinant of PRES .
Output 4.18 provides the correlations between P , ey, ex and X. To begin with, P is uncorrelated

with the terms ey and ex, which is unsurprising given that P is independently, randomly determined.
P is, however, correlated with X, a natural consequence of the fact that program participation is
a determinant of X by operating as the switching mechanism that determines whether, for a given
observation, X is equal to X1 or X0:

X = P ·X1 + (1− P ) ·X0

Output 4.19 provides the correlations between PRES , ey, ex and X. The situation is somewhat
different for PRES . PRES is completely uncorrelated with X, which it should be as the predicted
residual from the regression of P on X. However, PRES is highly correlated with ey and ex. The
correlation with ex is -.3501. The reason for this is made clear by the regression anatomy formula:
ex is a determinant of PRES . (Remember that PRES should be uncorrelated by construction with
X as a whole, but would not necessarily be uncorrelated with the individual components that
determine the values of X.) The correlation between PRES is derivative of the correlation between
PRES and ex: because ex and ey are correlated, correlation between PRES and ex generates
correlation between PRES and ey. Notice that the correlation between PRES and ey is about a
third of the value of the correlation between PRES and ex: PRES should be correlated with ey,
but less so than ex by a factor that reflects the correlation between ey and ex.

We have thus seen the genesis of the bad control problem in this instance. Via the regression
anatomy formula, we have seen how PRES is correlated with ex where P was not. However, because
ex and ey are correlated, the correlation between PRES and ex generates a correlation between
PRES and ey. Thus, a classic omitted variable bias to the estimate of program impact exists in
the regression of Y on PRES (which is, for the purpose of estimating program impact, equivalent
to regressing Y on P and X) where none was present in a regression of Y on P alone.
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STATA Output 4.18 (4.4.do)

. corr P ey ex X
(obs=50000)

P ey ex X

P 1.0000
ey -0.0045 1.0000
ex 0.0039 0.2980 1.0000
X 0.3537 0.2772 0.9367 1.0000

STATA Output 4.19 (4.4.do)

. corr PRES ey ex X
(obs=50000)

PRES ey ex X

PRES 1.0000
ey -0.1096 1.0000
ex -0.3501 0.2980 1.0000
X 0.0000 0.2772 0.9367 1.0000

Intuitively, X is an endogenous regressor. This means that X is correlated with unobservables
that determine Y . The regression anatomy formula tells us that the variation in P used to identify
program impact in a regression of Y on P and X is the variation in PRES . However, PRES is
contaminated by the endogenous variation in X. Regression of Y on P and X thus creates an
avenue for P to become contaminated by the endogenous variation in X.

The example we have covered focuses on the possibility of X being another outcome variable
the value of which depends on program participation. However, the problem of bad control bias is
much broader than this. A bad control is any control which:

1. Is correlated with the regressor of interest (even if it is not explicitly caused by it);

2. Is correlated with the unobservables in the regression of interest (i.e. is endogenous);

The broadness of these criteria suggest that the bad control problem is likely not a marginal concern
but instead a significant consideration in selecting appropriate regression specifications (i.e. in this
context, which controls to include). We were able to ignore this potential complication in earlier
examples of omitted variable bias and multiple regression because we assumed the error or random
term ε was mean independent of the regressors introduced to serve as controls for potential omitted
variable bias (e.g. x or x1, x2, ..., x5). We thus did not then need to be concerned with this
possibility, a luxury typically not available with a real world sample.

To demonstrate, we briefly discuss another example (also capture in do-file 4.4.do). Once again
we draw 50,000 observations from a contrived but illustrative data generating process. First, we
draw two variables, µ1 and µ2 from the a bivariate normal distribution with correlation .5. Next,
we separately draw two additional variables ex and ey from a bivariate normal distribution with
correlation .5. We then determine P , Y 1, Y 0 and Y as follows:

P =

{
1 if µ1 > 0
0 otherwise
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Y 1 = 3 + 4 · ey

Y 0 = 1 + 4 · ey

Y = P · Y 1 + (1− P ) · Y 0

Per the logic applied earlier in this discussion, the true average treatment effect should be 2.
Output 4.20 provides results from the regression of Y on P . The estimated program impact of
2.05918 is right in the neighborhood of the true average treatment effect of 2. This reflects the
lack by construction of a correlation between program participation P and any unobservables that
determine the outcome Y .

STATA Output 4.20 (4.4.do)

. reg y P

Source SS df MS Number of obs = 50000
F( 1, 49998) = 3320.49

Model 53002.7548 1 53002.7548 Prob > F = 0.0000
Residual 798085.331 49998 15.9623451 R-squared = 0.0623

Adj R-squared = 0.0623
Total 851088.086 49999 17.0221022 Root MSE = 3.9953

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 2.05918 .035735 57.62 0.000 1.98914 2.129221
_cons .9908723 .0252563 39.23 0.000 .9413697 1.040375

We now introduce a complication. Specifically, we generate a variable X as follows:

X = µ2 + ex

Notice that x is correlated with P because µ1 and µ2 are correlated (indeed, the correlation between
P and X is .2846). However, as this framework is presented, P does not really cause variation
in X (as, for instance, by serving as a switching mechanism between some hypothesized potential
outcomes X1 and X0). Rather, the framework is more consistent with the existence of some
unobserved variables (the effect of which is captured by µ1 and µ2) that influence both X and
P . X is also clearly correlated with the unobservable ey that shapes Y because ex and ey are
correlated. Indeed, the correlations between ex and Y and ey are, respectively, .4116 and .3538.
Thus, X is heavily correlated with the “unobservable” ey that determines Y .

Output 4.21 provides the results from a regression of Y on P and X. Plainly, the inclusion of
the variable X as a regressor has had a huge effect on the estimate of program impact: it is now
1.1889, only around 60 percent of the true program impact of 2. The reason for this is much the
same as in the first example: where the overall variation in P is uncorrelated with ey (with a sample
correlation of essentially zero at 0.0074) the variation in “residual” P (PRES , using the variable
definitions from the first example) per the regression anatomy formula has a correlation with ey of
-.0973. Once again, the endogeneity of X has contaminated the empirically utilized variation in P .

The difference in this example, of course, is that P does not cause variation in X. In other
words, we have seen that, essentially, a bad control is an endogenous control also correlated with
program participation. This is indeed a frightening notion, because it suggests that the bad control
threat might be quite widespread.

Unfortunately, ready tests for bad controls, so broadly defined, are not obvious. A bad control
must be correlated with the regressor of interest (a condition typically easily tested) and correlated
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with unobservables that determine the outcome of interest (a condition typically impossible to test).
In the end, selection of controls must be guided by judgment and informed appeals to theory to
avoid (hopefully) the pitfalls of bad controls. A useful guiding principle might be to prefer controls
less subject to the choices of the individuals whose outcomes are under consideration.

STATA Output 4.21 (4.4.do)

. reg Y P X

Source SS df MS Number of obs = 50000
F( 2, 49997) = 5806.89

Model 160432.176 2 80216.0881 Prob > F = 0.0000
Residual 690655.909 49997 13.813947 R-squared = 0.1885

Adj R-squared = 0.1885
Total 851088.086 49999 17.0221022 Root MSE = 3.7167

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 1.1889 .0346772 34.28 0.000 1.120932 1.256868
X 1.079302 .0122388 88.19 0.000 1.055314 1.10329

_cons 1.440349 .0240418 59.91 0.000 1.393227 1.487471

For instance, consider the evaluation of the impact of a health program on some health outcome.
It may be that those more likely to participate in the program are also likely to make healthier
choices, like smoking less or not at all. One might be tempted to control for the individual’s smoking
choices in a regression of the health outcome on program participation and potential controls for
confounding factors. In light of this discussion, it might be safer to control for the price of cigarettes
than the actual demand for them, for example, since the former is less under the control of the
individual.

One could argue that the application of such logic to the selection of controls reduces the
likelihood of the bad control problem. Variables less under the control of the individual probably
do not vary so much with their individual level preferences and other unobserved characteristics
that also work to shape outcomes of interest.

To be sure, however, such controls are not guaranteed to be exogenous: even if the individual
does not determine specifically and purposefully determine the value of a variable, the variation
in that variable might still be related to unobservables that influence the outcome of interest at
the individual level. To return to the example, the variation in cigarette prices across individuals
in a typical empirical sample reflects differences in the equilibrium price of cigarettes across the
markets in which those individuals operate. However, equilibrium market prices reflect supply and
demand determinants at the market level. For instance, it could be the cigarettes are, other things
being equal, cheaper in markets where the community has stronger preferences for health and
hence lower demand for cigarettes. However, the community preference for health might still shape
individual-level health outcomes. For instance, there are often externalities to certain channels of
health. Some individuals might, via social learning, be influenced by community-level norms.

4.1.4 The Program Participation Decision

We conclude our discussion of the unbiasedness and consistency of the regression estimator of
program impact by confronting briefly an issue about which we have thus far been somewhat
evasive: the determination of program participation. This serves three purposes. First, it will
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make explicit from a behavioral standpoint how a correlation between program participation P
and the regression errors might arise. Second, it is a good opportunity to introduce in simple terms
a model of program participation to which we will appeal repeatedly in this manual. Finally, it
represents our first stab at estimation of program impact in a setting where impact is not constant
across individuals.

We begin by extending the simple model introduced at the beginning of this section. Suppose
again that Y 1 is an individual’s outcome when they participate in a program, and Y 0 is their
outcome when they do not do so. Suppose as well that the individual’s potential outcomes can be
represented by

Y 0 = β0 + ε

Y 1 = β0 + β1 + εY 1 + ε

where the εs are some individual level random determinants of the potential outcomes and the βs
are population-level parameters. This extension of the simple model introduces an interesting new
behavioral twist: the random component εY 1. Since Y 1 and Y 0 are simply the outcomes if one
does or does not participate in a program, the most ready interpretation of εY 1 is the presence
of some unobserved determinant of {Y 1, Y 0} that influences program impact. Thus, there are
unobservables with a common effect on {Y 1, Y 0} captured by ε but also some unobservables that
effect program impact Y 1 − Y 0 captured by εY 1. Program impact at the individual level is now
Y 1 − Y 0 = β1 + εY 1: program impact can now vary between individuals to the extent that the
random component εY 1 does.

Observed Y is
Y = P · Y 1 + (1− P ) · Y 0

= P ·
(
β0 + β1 + εY 1 + ε

)
+ (1− P ) (β0 + ε)

= β0 + β1 · P + εY 1 · P ·+ε

Combining terms, we have

Y = β0 +
(
β1 + εY 1

)
· P ·+ε

P has an interesting coefficient: (β1 + εY 1). This can be thought of as comprising a population
parameter (β1) and an individual-specific random shift off of that term (εY 1) reflecting the role of the
unobservable that introduces some channel for differences in program impact between individuals.
Such a specification is called a random coefficients model.

If we have a sample for which we observe {Yi, Pi} for a sample of i = 1, ..., N individuals, we can
regress Y on P in an attempt to estimate average program impact. The estimator of the coefficient
on P would be

β̂1 =

∑N
i=1

(
Pi − P

)
· Yi∑N

i=1

(
Pi − P

)2
Substituting in

Yi = β0 +
(
β1 + εY 1

i

)
· Pi + εi

we have

β̂1 =

∑N
i=1

(
Pi − P

)
·
(
β0 +

(
β1 + εY 1

i

)
· Pi + εi

)
∑N
i=1

(
Pi − P

)2
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= β1 +

∑N
i=1

(
Pi − P

)
· Pi · εY 1

i∑N
i=1

(
Pi − P

)2 +

∑N
i=1

(
Pi − P

)
· εi∑N

i=1

(
Pi − P

)2
The unbiasedness of the estimator β̂1 thus depends critically not only on the independence or mean
independence of P and ε but also the independence or mean independence of P and εY 1 (similarly,
the consistency of β̂1 depends critically not only on P and ε being uncorrelated but also on P and
εY 1 being uncorrelated).

But are any of these assumptions regarding independence, mean independence or lack of cor-
relation involving either P and εY 1 or P and ε reasonable? To examine this, we take another step
beyond the simple framework introduced at the beginning of this section: we now consider how
program participation is determined. A simple model of program participation might suggest that
individuals participate if

Y 1 − Y 0 ≥ 0

In other words, individuals participate if they experience a better outcome by doing so (sometimes
this is loosely referred to in the impact evaluation literature as a “Roy-Type Model”, after Roy
(1951)).

However, this ignores a key concern most individuals likely face when enrolling in a program:
doing so likely involves a cost.34 To capture this, we introduce a cost function for participation
along the lines of:35

C = γ0 + εC

This model thus characterizes fully the potential benefits (Y 1 − Y 0) and costs (C) of program
enrollment. We can now pursue a richer model under which an individual participates (i.e. P = 1)
if

Y 1 − Y 0 − C ≥ 0

In other words, the individual participates in the program if the gain from participating is at least
as large as the cost of doing so.36

Inserting the equations for Y 1, Y 0 and C, we have

β0 + β1 + εY 1 + ε− β0 − ε− γ0 − εC ≥ 0

34Participation even in ostensibly free programs might involve costs, such as time costs, child care costs (to cover
children while parents participated, lost wages, etc.).

35This is a single equation specification, which may trouble some since the potential outcomes framework is two
equations. For instance, there might be costs involved with not participating in some types of programs. The U.S.
Affordable Care Act, with its penalty for not obtaining health insurance, would seem to be a timely example. This
can be easily reconciled with the single equation approach simply by assuming that the single cost equation in the
main body of the text is the difference of two underlying cost functions:

Cj = γj0 + εCj

for j = 0, 1. The single equation is then generated by the net cost

C1 − C0 = γ10 + εC1 − γ00 − εC0 = γ0 + εC

where γ0 = γ10 − γ00 and εC = εC1 − εC0 .
36One detail we have ignored is that {Y 1, Y 0} might not be in the same metric (i.e. unit of measurement) as C. For

instance, costs could be in monetary terms and the potential outcomes might involve some channel of health. This
could be easily resolved either by multiplying by {Y 1, Y 0} some price or converting C into health terms, perhaps by
attaching a monetary value to {Y 1, Y 0} and dividing C by that price. While this can be a fascinating intellectual
exercise in its own right, it is not an important detail for the present discussion. We therefore assume that {Y 1, Y 0}
and C are in the same metric.
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or, re-arranging, program participation would equal 1 if

εY 1 ≥ −β1 + γ0 + εC

Notice that, all other things (by which we mean εC) being equal, this condition is more likely to
hold the larger is εY 1. In other words, P is more likely to equal 1 at larger values of εY 1 and more
likely to equal 0 at smaller values of εY 1: in other words, P is likely to be correlated with εY 1.

We have learned something important from this: the random coefficient estimator β̂1 is likely
to be biased and inconsistent if εY 1 6= 0. The intuition behind this is fairly straightforward. If
there are unobserved determinants of Y (in our model, εY 1) that influence program impact and
play a role in the program participation decision, large values of that unobservable become more
likely when P = 1 than when P = 0. Thus, when we try to estimate average program impact by
comparing the average of Y 1 for those for whom P = 1 with the average of Y 0 for those for whom
P = 0, the former exaggerates what non-participants (i.e. those for whom P = 0) would have
experienced by way of program impact had they participated since the value of εY 1 for participants
is generally bigger for participants than non-participants.

Assuming that εY 1 = 0 is the same as assuming that there is no unobservable that influences
program impact. The random coefficient component of the regression model then drops out and
we are back to the straightforward regression model

Y = β0 + β1 · P + ε

We have learned something very important from this: in the presence of unobservables that influ-
ence program impact and participation, it is not possible to obtain an unbiased estimate of average
program impact, even if that unobservable plays no role in determining the cost of participation
(remember, we have said little to this point about εC). Thus, the assumption that P is indepen-
dent, mean independent or uncorrelated with εY 1 is tantamount to assuming no unobservable that
influences program impact in our simple model of program participation.

Nor do the complications involved with introducing our simple participation decision model end
with this. Assuming that εY 1 = 0 and re-arranging, the individual decides to participate if

β1 − γ0 ≥ εC

Clearly, the smaller is εC the more likely the individual participates. This is sensible: it essentially
says that the lower are the costs of participation (or, in this case, that component of costs determined
by unobserved random factors) the more likely is the individual to participate. But this also means
that εC will generally be greater among non-participants than participants, or that participation
P is (negatively) correlated with εC .

This could create problems as there are unobservables that occur in both εC and ε. For instance,
some unobserved types of individuals might tend to have low cost and higher values of {Y 0, Y 1}. If
this is the case, εC and ε could be correlated. However, since P and εC are correlated, this means
that P and ε would be correlated, rendering the regression estimate of program impact biased and
inconsistent.

This can be seen intuitively by considering the estimation of program impact by comparing the
average outcomes Y among participants (P = 1, for whom Y = Y 1) and non-participants (P = 0,
for whom Y = Y 0). Certain unobserved types are more likely to have lower costs of participation.
Those types are thus more likely to participate: they are concentrated among the sample for whom
P = 1. If those same unobserved types are likely to have different values of Y 1 and Y 0 then some
of the difference in average Y between participants and non-participants will be picking up the
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imbalance of these unobservables between them, as opposed to simply reflecting the impact of the
program.

So what does all of this mean? Essentially, it means that if we wish to obtain an unbiased or
consistent estimate of average program impact under this behavioral model via regression there
cannot be an unobservable that either:

1. Influences program impact and program participation;

2. Influences the potential outcomes {Y 0, Y 1} in the same way but also influences program
participation (which we have already seen in the discussion in the preceding section).

Thus, even this extremely simple and basic model of the program participation decision has gener-
ated two distinct pathways by which unobserved random determinants of the potential outcomes
might possibly undermine our ability to estimate average program impact via regression (or even
just simple comparison of mean outcomes between participants and non-participants)! From this
simple model, an obvious lesson is thus emerging: using selection on observables models essentially
precludes the possibility of unobservables that influence both potential outcomes and program
participation.

4.1.5 Standard Errors

In this section we briefly digress to consider the subject of estimating the sampling variation of
regression estimates. For instance, consider the basic departure point of the discussion of regression,
which was the following simple model:

Y = β0 + β1 · P + ε

Through regression analysis we seek estimates β̂0 and β̂1 of β0 and β1, respectively. As we have
seen, if we observe {Yi, Pi} for a sample of i = 1, ..., N individuals, the least squares regression
estimates for that sample are given by

β̂1 =

∑N
i=1(Pi − P ) · (Yi − Y )∑N

i=1(Pi − P )2
=

∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

and
β̂0 = Y − β̂1 · P

where

Y =

∑N
i=1 Yi
N

and

P =

∑N
i=1 Pi
N

Notice that the value of these depends on the specific set of values for {Pi, Yi} for i = 1, ..., N
observed in the particular sample of size N .

However, this means that the particular values for β̂0 and β̂1 are sample dependent. Suppose,
for instance, that we randomly selected a sample of size N from some population of interest. We
might then dutifully interview them to obtain information {Pi, Yi} for each of the i = 1, ..., N
individuals in the sample and then regress Y on P with the observations in this sample in order
to form estimates β̂0 and β̂1. Suppose that we then repeated the process of random selection of a
sample of size N , interview and regression. It is not likely that the set of values for {Pi, Yi} across
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the i = 1, ..., N observations would be exactly the same as in the first sample: the individuals
selected for this second sample would probably not have experienced quite the same mix of values
for the outcome of interest because they experienced a different set of random shocks ε. This means
that the value of the estimates β̂0 and β̂1 would not be quite the same as in the first sample.

Clearly we would like to know something about this sampling variation: it tells us something
about the reliability or precision of an estimate in the sense of how much it randomly fluctuates
from sample to sample. Returning to the regression example, suppose that E(β̂1) = β1 (in other
words, suppose that β̂1 is an unbiased estimator of β1). This tells us that β̂1 is right on average
as an estimator of our estimand, β1. However, we would likely still have more confidence in a
particular estimate β̂1 (calculated from a particular sample) if we knew that the estimates tended
to vary little from sample to sample. We would be less confident in that estimate if we knew that
the estimates varied a lot from sample to sample. Indeed, we could even imagine a circumstance
where we might prefer a slightly biased estimator that did not vary much from sample to sample
to an unbiased one that varied a lot from sample to sample.

Fortunately, the two regression methods we have seen thus far (least squares and logit) allow for
relatively straightforward estimation of the sample to sample variation in the estimates generated
by them. In this subsection we will focus simply on deriving the estimated variance of the estimator
β̂1 and performing simple statistical tests with the result.37

To begin with, the variance of any random variable (we’ll use ‘Z’ as a reference) is simply

var (Z) = E
(
(Z − E (Z))2

)
The variance of Z is simply its expected squared difference from its expectation. It is a measure
of how much Z varies around its expected value. The square root of the variance is the standard
deviation. Two key properties of the variance will be important for the derivation to follow. Suppose
that c is a constant. Then

var (c) = 0

var (c · Z) = c2 · var (Z)

The first result simply reflects the fact that c is a constant and not a variable. Hence it does not
vary at all. The second result is easily derived:

var (c · Z) = E
(
(c · Z − E (c · Z))2

)
= E

(
(c · Z − c · E (Z))2

)
= E

(
c2 · (Z − E (Z))2

)
= c2 · E

(
(Z − E (Z))2

)
= c2 · var (Z)

These two properties will be invoked to derive var
(
β̂1
)
.

At this point it is also useful to introduce the concept of “degree of freedom”. In a sample (for
instance of N individuals) variance is usually estimated by

∑N
i=1

(
Zi − Z

)2
N − 1

37In general, the focus of this manual is the properties of estimators of program impact mainly in terms of unbi-
asedness and consistency. We digress to discuss sampling variation and testing in the main body of the manual only
when necessary.
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where

Z =

∑N
i=1 Zi
N

Note that the denominator of the variance estimator is N−1. N−1 is the “degrees of freedom” for
the estimation of the variance. This is basically a fancy way of indicating the number of observations
truly free to contribute to the calculation of the variance. The reason it is not simply N is that
the estimate of the variance involves use of an estimate (i.e. Z). However, a key property of the
estimated mean is that

N∑
i=1

(
Zi − Z

)
= 0

In other words, the differences between the actual values of Zi and the estimated mean Z should
cancel out across the sample. But this means that one observation needs to be used simply to insure
that this condition holds. That observation then cannot provide truly independent information for
the estimation of variance. This leaves us with N − 1 truly independent observations with which
to estimate variance.

We now consider the task of estimating the variance of β̂1. We begin with the formula for β̂1:

β̂1 =

∑N
i=1(Pi − P ) · Yi∑N
i=1(Pi − P )2

= β1 +

∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

The second line relies on exactly the same math used earlier to develop the expectation of β̂1, but
without the focus on the expectations operator E(·). Then

var
(
β̂1
)

= var

(
β1 +

∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)

= var

(∑N
i=1(Pi − P ) · εi∑N
i=1(Pi − P )2

)
because as a population parameter β1 is constant and thus does not vary. For the next step, we
treat ∑N

i=1(Pi − P )∑N
i=1(Pi − P )2

as if it were a constant. Then, exploiting the property var(cZ) = c2var(Z), we have

var
(
β̂1
)

=

∑N
i=1(Pi − P )2(∑N
i=1(Pi − P )2

)2 var (εi)

=
var (εi)∑N

i=1(Pi − P )2

The variance of the estimate β̂1 is thus increasing in the variance of ε and decreasing in the variance
of P .

The only remaining question within the context of this simple derivation is how to estimate
var(εi). This is typically estimated from the predicted residual

ε̂i = Yi − β̂0 − β̂1 · Pi
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The estimated variance of ε is then simply ∑N
i=1 (ε̂i)

2

N − 2

The division by N − 2 again reflects the degrees of freedom available for the calculation of the
variance of ε̂i (since two parameters, β̂0 and β̂1 are in the mean function E(Y |P ) = β̂0 + β̂1 used to
calculate ε̂, leaving N − 2 parameters truly free to calculate the estimated sample variance of the
predicted error).

A smaller variance to β̂1 indicates greater precision to the estimate in the sense of less sampling
variation. This can be also be seen through a test statistic for significance and the p-value associated
with that statistic. The former is typically generated automatically by most commercial statistical
packages (such as STATA) as part of the standard regression output. It is basically a test statistic
formed under the assumption that the true value of β1 is zero. The value of the statistic provides
some indication of how likely it is that that assumption is true. This is even more directly expressed
by the p-value, which can interpreted as the probability that the assumption is true given the value
of the test statistic.

Behind this standard regression output test statistic is a basic hypothesis test. That test involves
a null hypothesis (denoted H0) which, if true, would imply a particular probability distribution.
Test statistics can then be crafted per that distribution. The null hypothesis would be rejected if
the value of that test statistic seems unlikely for that distribution. It would be rejected in favor of
an alternative hypothesis (Ha). The specific hypotheses behind the typical automatic regression
output are:

H0 : βk = 0

Ha : βk 6= 0

where k indicates the kth regression parameter. This hypothesis is usually tested for each of the
k = 1, ...,K regression parameter estimates. So, for instance, for the basic least squares regression
of Y on P it would be tested for β̂0 and β̂1.

The test statistic on which we focus for now (because it is most relevant to the discussion in
the next subsection) is the t-statistic. The t-statistic under the null hypothesis that β1 = 0 is

β̂1 − 0√
var

(
β̂1
) =

β̂1

se
(
β̂1
)

where se(·) indicates “standard error”. This may look to some readers like the standardization
common for converting a normally distributed random variable with mean zero into a standard
normal random variable. However, it would not be appropriate to view this as a standard normal
random variable since the denominator is an estimate. Instead, it is more appropriate to approach
this as a statistic to be assesses under Student’s t-distribution (see Tool Boxes on The Normal
and χ2 Distributions and Student’s t-distribution). In particular, this is referred to as a t-statistic,
one with N − 2 degrees of freedom.38 The t-distribution has an overall shape similar to the normal
distribution but with somewhat fatter tails. In formal terms, it is leptokurtic, a fancy way of
saying that a distribution has more weight in the tails than the normal distribution. This becomes
less true as the degrees of freedom increases, until eventually the t-distribution becomes essentially

38In general, the basic t-statistic for testing the significance of regressors has N −K degrees of freedom where k is
the number of regressors, including the constant.
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indistinguishable from the normal distribution (though to be sure there was not that much difference
to begin with).

Tool Box: The Normal and χ2 Distributions

The Normal Distribution (sometimes referred to as the Gaussian distribution) is a workhorse
of statistics. If x is a normally distributed random variable with mean µ and variance σ2,
its probability density is given by

f (x = c) =
1

σ
√

2 · π
· e−

(c−µ)2

2·σ2

The fact that x is normally distributed with mean µ and variance σ2 is typically indicated
x ∼ N (µ,σ2). In Figure 4.4 we illustrate the normal distribution with various values for the
mean µ and variance σ2. N (0,1) refers to a particular, and particularly popular, case of the
normal distribution known as the standard normal distribution. Notice that the normal
distribution is always single peaked (or, more formally, uni-modal) and symmetric around
that mode. Any variable x that is distributed N (µ,σ2) can be converted into a standard
normal distributed random variable via the conversion

x− µ
σ

One density directly derived from the normal is the χ2 (pronounced “chi-squared” as in the
Greek letter “chi” or χ). Specifically, if z is a standard normal random variable, the w = Z2

is a chi-squared random variable, denoted χ2
1. If {w1, w2, w3, ..., wk} are all χ2

1 distributed
random variables, then

w1 + w2 + w3 + ...+ wk

is distributed χ2
k (in other words, it is a random variable that is chi-squared distributed with

k degrees of freedom). By definition χ2 random variables must be non-negative. Figure 4.5
graphs the χ2 distribution for various degrees of freedom.

To test the hypothesis outlined above, we need to decide on the significance of the test. The
degree of significance is the probability of a Type-I error. A Type-I error involves falsely rejecting a
true null hypothesis. From the t-distribution we can find critical values tc and −tc (where tc = |−tc|)
such the probability of a Type-I error is α (in other words, different critical values would yield a
different probability of a Type-I error). The chosen probability α of a Type-I error is called the
significance of the test.
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Tool Box: Student’s t-Distribution

If Z is a standard normal distribution (i.e. Z ∼ N(0,1)) and w is a χ2 random variable with
N degrees of freedom, then

z√
w
N

follows a t-distribution with N degrees of freedom. In practice, the t-distribution looks
for the most part like the standard normal distribution, though it is a bit fatter in the
tails (particularly at lower degrees of freedom). The t-distribution is thus the ratio of two
random variables. It is used for testing in the present context because the denominator
of the test statistic for significance is an estimate, and hence the normal distribution (for
which the denominator σ is the actual, as opposed to estimated, standard error) would not
be an appropriate distributional choice for testing. The t-distribution is often referred to as
“Student’s t-distribution” because it was introduced in a Biometrika paper in 1908 written
under the pseudonym “Student”. The real identity of the author was William Gossett, who
worked at the time for the Guinness Brewery in Dublin, Ireland. He had to write under a
pseudonym owing to company policy forbidding employees publishing in scientific papers.

This is illustrated in Figure 4.6. The curve in the figure illustrates the t-distribution under the

Figure 4.4: Normal Densities
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null hypothesis that β1 = 0. In particular, note that it is centered on zero. In other words, if the
null hypothesis is true, the most likely value for the t-statistic is 0. As you move farther to the left
or right from origin at 0 the t-values are becoming less and less likely under the null hypothesis
that β1 = 0. The critical values {−tc, tc} provide the critical values beyond which (i.e. to the left
of −tc and the right of tc) the probability of observing a t-statistic value under the null hypothesis
is α.

If α is the significance level of the test, we would accept the null hypothesis if the t-statistic
for the sample is greater than −tc and less that tc (in other words, if the t-statistic is t̂ we would
accept the null hypothesis that β1 = 0 if −tc ≤ t̂ ≤ tc). We would reject the null hypothesis (and
instead accept the alternative hypothesis that β1 6= 0) if the test statistic is greater that tc or less
that −tc. But we would be doing so knowing that there is a probability of α that the test statistic
could be greater than tc or less than −tc and the null hypothesis of β1 = 0 still be true.

Acceptance and rejection of the null hypothesis are also illustrated in Figure 4.7. In that figure,
two potential test statistic values, t̂1 and t̂2, are considered. To fix ideas, one can think of these
t-statistics as emerging from two different samples, sample 1 and sample 2 (hence the subscripts on

Figure 4.5: Chi-Squared Densities
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the t-statistics). Presented with the t-statistic t̂1 we would accept the null hypothesis at significance
level α because −tc ≤ t̂1 ≤ tc. On the other hand, we would reject the null hypothesis at the α
level because t̂2 ≤ −tc (we also would have rejected if t̂2 had been greater than tc.

Finally, in Figure 4.8 we consider the p-value associated with a given t-statistic value t̂. The
p-value is the significance level that would be required to reject the null hypothesis that β1 = 0
given the value of the test statistic t̂. t̂ is to the left of the origin (i.e. negative) but the p-value
is formed on both sides of the origin. In other words, it is effectively the probability that the
t-statistic could be less that t̂ or greater than −t̂ and the null hypothesis still be true. We have to

Figure 4.6: The Probability of a Type-I Error

Figure 4.7: Accepting and Rejecting The Null Hypothesis
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consider both tails of the t-distribution because the alternative hypothesis indicates that this is a
two-sided test: the alternative hypothesis is that β1 6= 0, which could happen either if β1 < 0 or
β1 > 0.39

Notice that as the test statistic value gets closer and closer to zero the p-value would grow
increasingly large until it reached 1. In other words, a t-statistic value of 0 would imply that the
null hypothesis that β1 = 0 could be rejected only in the face of a 100 percent chance of a Type-I
error. A small p-value, on the other hand, indicates that the null hypothesis could be rejected with
only a small probability of a Type-I error.

The conventional significance levels for the basic hypothesis test

H0 : β1 = 0

Ha : β1 6= 0

are 10, 5 and 1 percent. Thus, a p-value greater than .05 but less than or equal to .1 would indicate
that the null hypothesis would be rejected at the 10 percent significance level. A value greater than
.01 but less than or equal to .05 would indicate that the null hypothesis would be rejected at the 5
percent significance level. Finally, a p-value at or less than .01 would indicate rejection of the null
hypothesis at the 1 percent level.

Figure 4.8: The P-value of a Test Statistic t̂

We conclude by recalling the t-statistic formula under the null hypothesis that β1 = 0:

β̂1 − 0√
var

(
β̂1
) =

β̂1

se
(
β̂1
)

The more precisely that β1 is estimated the smaller will be the standard error se(β̂1). Other things
being equal, this will make the value of the t-statistic larger. This implies a smaller and smaller
p-value for the test statistic: we could, given the test statistic value, reject the null at smaller and
smaller levels of significance.

39By comparison, a one-sided test would consider only one of these two possibilities for the alternative hypothesis.
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4.1.6 Regression and Randomized Data

We conclude with a very brief discussion of the application of multiple regression to program
impact evaluation in experimental samples. The reader would be reasonable in asking what could
be gained from this. Since program participation is randomized in an experimental sample, it is thus
independent of other variables such as individual background characteristics that might otherwise
serve as confounders in the non-experimental data setting. In that context, it is not immediately
obvious what is to be gained by regression of the outcome of interest Y on program participation
P and a bunch of controls for potential confounders. It might seem sufficient simply to regress Y
on P alone or simply calculate the difference in average outcomes between those for whom P=1
and P=0.

And indeed it is sufficient from the standpoint of recovering an unbiased and consistent estimate
of program impact. However, it would also be preferable if the estimate was as precise as possible.
For instance, suppose we were to regress Y on P alone (evoking the basic model Y = β0+β1·P+ε). If
this is done with an experimental sample (wherein program participation P is completely randomly
determined) then the least squares estimator β̂1 is unbiased (and consistent). But unbiased simply
means that the estimator β̂1 is correct on average. The values for the estimates β̂1 from different
samples can vary a lot around actual program impact. Thus for any given sample the estimate
might be quite misleading. It would thus be preferable if the sample by sample variation in the
estimates β̂1 was as small as possible.

It is this consideration that motivates an argument for multiple regression, even with experi-
mental data. In the last subsection, we saw that

var
(
β̂1
)

=
var (εi)∑N

i=1(Pi − P )2

Clearly, the smaller is the variance of ε the smaller will be the sampling variation in β̂1. Intuitively,
one way to reduce the variance of ε is to simply reduce its relative share in the total variation in
Y . This can be done by adding more explanatory variables. By adding them, we essentially take
them out of the residual term ε, reducing ε’s role in the overall variation in Y . This can lead to
more precise (i.e. less variable) estimates of β̂1, even if program participation P is independent of
those explanatory variables.

STATA Output 4.22 (4.5.do)

. reg Y P

Source SS df MS Number of obs = 2000
F( 1, 1998) = 3.06

Model 49.8180723 1 49.8180723 Prob > F = 0.0802
Residual 32490.895 1998 16.2617092 R-squared = 0.0015

Adj R-squared = 0.0010
Total 32540.713 1999 16.2784958 Root MSE = 4.0326

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .315671 .1803534 1.75 0.080 -.0380294 .6693715
_cons 1.020916 .1268258 8.05 0.000 .7721912 1.26964

We illustrate with a numerical example (provided in the STATA do-file 4.5.do). For this ex-
ample, we generate 2,000 observations for Y , P and forty explanatory variables x1, x2, ..., x40.
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To begin with, program participation is independently and randomly determined on the basis of
whether draws from the standard normal distribution exceed 0 or not (i.e. P is experimentally
determined). We then defined Y as

Yi = 1 + .5 · Pi + ψ1 · x1 + ψ2 · x2 + ψ3 · x3 + ...+ ψ40 · x40 + ε

where the xs are independently drawn from the standard normal distribution, and the ψs are
drawn from the uniform distribution on the interval [0,1] and then multiplied by -1 or 1 according
to whether that is an even (e.g. x4) or odd (x21) numbered variable. Finally, ε ∼ N (0,4). True
program impact is thus .5.

STATA Output 4.23 (4.5.do)

. reg Y P x1

Source SS df MS Number of obs = 2000
F( 2, 1997) = 4.14

Model 134.36782 2 67.1839101 Prob > F = 0.0161
Residual 32406.3452 1997 16.2275139 R-squared = 0.0041

Adj R-squared = 0.0031
Total 32540.713 1999 16.2784958 Root MSE = 4.0283

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .3251667 .1802117 1.80 0.071 -.0282559 .6785894
x1 -.2038953 .0893258 -2.28 0.023 -.3790769 -.0287137

_cons 1.01554 .1267142 8.01 0.000 .7670336 1.264046

STATA Output 4.24 (4.5.do)

. reg Y P x1-x5

Source SS df MS Number of obs = 2000
F( 6, 1993) = 47.29

Model 4055.33589 6 675.889315 Prob > F = 0.0000
Residual 28485.3772 1993 14.2927131 R-squared = 0.1246

Adj R-squared = 0.1220
Total 32540.713 1999 16.2784958 Root MSE = 3.7806

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .3468251 .1691585 2.05 0.040 .0150791 .6785712
x1 -.2457859 .083874 -2.93 0.003 -.4102758 -.081296
x2 .1870881 .0860391 2.17 0.030 .0183521 .3558241
x3 -1.237739 .0827848 -14.95 0.000 -1.400093 -1.075386
x4 .5545533 .0836324 6.63 0.000 .3905373 .7185693
x5 -.0256608 .0852108 -0.30 0.763 -.1927723 .1414508

_cons 1.053226 .1189661 8.85 0.000 .8199152 1.286537

We consider the role of explanatory variables in determining the precision of an experimental
estimate of program impact by regressing Y on P alone, and then regressing Y on increasingly
large numbers of controls (i.e. the xs). We begin with Output 4.22, for which the results of simple
regression of Y on P are shown. The estimate of program impact (.315671) is only around 60
percent of the true program impact. The estimate is also not particularly precise, as evidenced by
a standard error (the square root of the variance) that is roughly 57 percent of the value of the
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estimate, a modest t-statistic (1.75) and a p-value of 0.08 (indicating that the null hypothesis for
the standard significance test would be accepted at the 10 but not 5 or 1 percent levels).

STATA Output 4.25 (4.5.do)

. reg Y P x1-x10

Source SS df MS Number of obs = 2000
F( 11, 1988) = 50.55

Model 7112.82651 11 646.620592 Prob > F = 0.0000
Residual 25427.8865 1988 12.7906874 R-squared = 0.2186

Adj R-squared = 0.2143
Total 32540.713 1999 16.2784958 Root MSE = 3.5764

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .3395683 .1600808 2.12 0.034 .0256245 .6535121
x1 -.2339935 .0794026 -2.95 0.003 -.3897146 -.0782725
x2 .177439 .0814993 2.18 0.030 .017606 .337272
... ... ... ... ... ... ...
x9 -.257163 .0796385 -3.23 0.001 -.4133468 -.1009793
x10 .6646639 .0802806 8.28 0.000 .5072208 .8221069

_cons 1.021846 .1126557 9.07 0.000 .80091 1.242781

STATA Output 4.26 (4.5.do)

. reg Y P x1-x20

Source SS df MS Number of obs = 2000
F( 21, 1978) = 63.41

Model 13092.9821 21 623.475338 Prob > F = 0.0000
Residual 19447.7309 1978 9.83201766 R-squared = 0.4024

Adj R-squared = 0.3960
Total 32540.713 1999 16.2784958 Root MSE = 3.1356

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .3489339 .14089 2.48 0.013 .0726254 .6252424
x1 -.2022207 .0698535 -2.89 0.004 -.3392148 -.0652266
x2 .170864 .0715161 2.39 0.017 .0306092 .3111188
... ... ... ... ... ... ...
x19 -.1280954 .0719818 -1.78 0.075 -.2692635 .0130727
x20 .6558725 .0709883 9.24 0.000 .5166528 .7950921

_cons 1.009012 .0989782 10.19 0.000 .8148997 1.203125

In Outputs 4.23-4.27 we add successively greater numbers of controls x to the regression. In
Output 4.23 we add just one control (x1) but nonetheless see a slight improvement in precision, as
evidenced by a tiny increase in the t-statistic and tiny decrease in the p-value. A more substantial
gain in precision comes with the addition of five controls (x1, ..., x5) in Output 4.24. The t-statistic
and p-value for P have improved to the point where P is actually significant at the 5 percent level.

In Outputs 4.25, 4.26 and 4.27 we see 10, 20 and 40 regressors, respectively, added (to conserve
space, only partial output is shown for each case). As this process plays out the standard error of
estimated impact falls (both in absolute terms and as a percentage of either the estimate or the true
program impact), to the point where, with 40 regressors added, the estimate of program impact is,
at .4630212, not far off from the truth. More to the point (from a sampling variation standpoint)



124 CHAPTER 4. SELECTION ON OBSERVABLES

the standard error is only around half of its original value (i.e. .0911341/.1803534=.50530847) and
the p-value indicates significance at the 1 percent level.

STATA Output 4.27 (4.5.do)

. reg Y P x1-x40

Source SS df MS Number of obs = 2000
F( 41, 1958) = 148.40

Model 24618.1777 41 600.443359 Prob > F = 0.0000
Residual 7922.53531 1958 4.04623867 R-squared = 0.7565

Adj R-squared = 0.7514
Total 32540.713 1999 16.2784958 Root MSE = 2.0115

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .4630212 .0911341 5.08 0.000 .2842912 .6417513
x1 -.2225914 .0451185 -4.93 0.000 -.3110767 -.1341061
x2 .182892 .0461205 3.97 0.000 .0924416 .2733424
... ... ... ... ... ... ...
x39 -.0475312 .045285 -1.05 0.294 -.1363431 .0412807
x40 .7019262 .0458434 15.31 0.000 .6120192 .7918333

_cons .9432708 .0637802 14.79 0.000 .8181866 1.068355

This is admittedly a somewhat contrived (in the sense that there is no guarantee that the im-
provement in precision seen is indicative of typical improvement) example, but nonetheless provides
a powerful illustration of the gains from multiple regression even in the experimental context. More-
over, in a true experimental setting one need not worry about the bad control problem (even if one
of the controls x introduced to improve precision is endogenous). The reason is that the random
determination of P precludes a relationship between P and any control x, which is necessary for
the bad control problem to arise.

4.2 Matching

We now turn to matching, the other major estimation tradition within the “selection on observables”
framework. The basic idea of matching is quite simple: to estimate what would have happened to
someone under the counterfactual state (i.e. the alternative program participation status to the
one they chose) look to what happened to someone just like them who actually experienced that
counterfactual state. For instance, to estimate program impact for a participant (for whom we do
not observe Y 0, the outcome in the absence of program participation), the matching approach forms
an estimate of that participant’s outcome in the absence of participation Y 0 using the outcome
observed for a similar non-participant (or outcomes observed for similar non-participants). An
estimate of impact at the population level can then be formed by appropriately averaging the
estimated program impact across the individuals observed in a random sample from that population.
This basic idea has inspired an enormous methodological literature and led to a range of different
impact evaluation techniques (some of which can only be loosely described as matching). One thing
should, however, already be clear: you can only tell if one individual is “like” another in terms of
characteristics that are observed. Even at this very initial, tentative moment the reader may thus
have some sense of why this is thus considered a “selection on observables” based impact evaluation
approach.
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4.2.1 Matching: The Basics

We once again begin with a simple model motivated by the potential outcomes framework. Specif-
ically, we have the potential outcome equations

Y 0 = β0 + β2 · x+ ε

Y 1 = β0 + β1 + β2 · x+ β3 · x+ εY 1 + ε

where x is an observed characteristic of the individual and {ε, εY 1} are unobserved characteristics
of the individual (in other words, {x, ε, εY 1} take on different values for different individuals but
only the variation in x is actually observed across individuals). Program impact is then

Y 1 − Y 0 = β1 + β3 · x+ εY 1

This is thus a framework where program impact varies across individuals. It does so because
individuals have different observed (captured by the term β3 ·x) and unobserved (captured by εY 1)
determinants of program impact.

We also specify the cost of participation as

C = γ0 + γ1 · x+ εC

Thus, the cost of participation now depends on the observed variable as well as an unobserved
characteristic represented by εC . We adopt the earlier condition for determining participation
status. Specifically, the individual participates (i.e. P = 1) if

Y 1 − Y 0 − C ≥ 0

or, inserting the functions we have proposed,

β0 + β1 + β2 · x+ β3 · x+ εY 1 + ε− β0 − β2 · x− ε− γ0 − γ1 · x− εC ≥ 0

or, removing terms,
β1 + β3 · x+ εY 1 − γ0 − γ1 · x− εC ≥ 0

Re-arranging, we have,
εY 1 + (β3 − γ1) · x− εC ≥ −β1 + γ0

Whether this inequality holds clearly depends on the values of εY 1, x and εC . Thus, this is a
framework where program impact varies across individuals and certain observed and unobserved
types of individuals are more common among participants than non-participants.

Before proceeding it is worth briefly considering the regression specification implied by this
model. Observed Y is

Y = P · Y 1 + (1− P )Y 0

= P ·
(
β0 + β1 + β2 · x+ β3 · x+ εY 1 + ε

)
+ (1− P ) · (β0 + β2 · x+ ε)

= β0 + β1 · P + β2 · x+ β3 · P · x+ P · εY 1 + ε

Thus, x has some effect common to the two potential outcomes (captured by the term β2 · x) but
also influences program impact through the term β3 · P · x. The manner in which x enters the
regression specification in some sense provides some insight into the genesis of the term εY 1: there
are some unobservables that influence both potential outcomes (their common effect is subsumed in
ε which effectively summarizes the role of the various unobservables that have a common influence
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on the potential outcome) and have implications for program impact. The net effect of these is
captured by the term P · εY 1.40

In our earlier discussion of random coefficients regression, a similar specification for the unob-
servables arose. Then, we found that estimating average program impact in an unbiased fashion
required two assumptions in the face of a purposeful program participation decision along the lines
proposed then and in the current example:

1. That εY 1 plays no role in the participation decision (which in this context is tantamount to
assuming that εY 1 = 0);

2. That the random component of the potential outcomes (ε) is uncorrelated with the random
component of cost εC .41

What remains to be seen is whether matching requires similar assumptions to recover unbiased
estimates of program impact.

Matching estimates program impact for each individual by finding a similar individual who
experienced the counterfactual outcome. For a participant the counterfactual outcome is Y 0 while
for a non-participant it is Y 1. For each individual, their counterfactual outcome is estimated by
the outcome experienced by a similar person for whom that counterfactual is observed. Thus the
counterfactual for a non-participant would be the outcome Y (= Y 0) for a similar participant. In
this manner, an estimate of Y 1 − Y 0 can be formed for each observed individual. It is an estimate
because the value of either Y 1 or Y 0 will have been estimated for each individual according to their
participation status. With the estimates of program impact Y 1 − Y 0 so formed for each observed
individual, forming an estimate of average impact for whatever population the observed individuals
represent simply involves suitably averaging across them.

To bring focus to this, suppose that you have a representative (of some population of interest)
sample of N individuals and, for each, information on {Yi, Pi, xi} for i = 1, ..., N . In other words,
we observe for each individual in the sample their outcome of interest Y , program participation
status P and a single observed characteristic x.42

More formally, x is an observed characteristic, and for any given individual j that random
variable takes on the specific value xj = xv (for instance, if x is income measured in increments of
$1,000, x1 might be $0, x2 might be $1,000, x3 might be $2,000, etc.). For simplicity we assume

40To fix ideas, one might adopt an “error components” structure along the lines of ε = ε1 + ε2, where ε2 is an
unobservable that has the same effect on Y 1 and Y 2 and ε1 is an unobservable that has a common influence on the
two potential outcomes but also a particular influence on Y 1 (we speak of a single unobservable behind each for
simplicity; in reality many different unobservable characteristics could contribute to their value). Then we have

Y 0 = β0 + β2 · x+ β5 · ε1 + β6 · ε2

= β0 + β2 · x+ ε

and
Y 1 = β0 + β1 + β2 · x+ β3 · x+ β4 · ε1 + β5 · ε1 + β6 · ε2

= β0 + β1 + β2 · x+ β3 · x+ εY 1 + ε

where εY 1 = β4 · ε1 and ε = β5 · ε1 + β6 · ε2.
41In the regression context, an unbiased estimate actually required independence or mean independence of ε and

εC while a consistent one required corr(ε, εC) = 0. We often focus on the correlation condition (e.g. the possibility
that corr(ε, εC) 6= 0) because in the context of the behavioral models we typically consider the program participation
condition would potentially generate a correlation between ε and εC (in the absence of assumptions), which would
also undermine independence or mean independence.

42The discussion will soon consider observation of many characteristics, but for now it is simplest to consider just
one observed characteristic.
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that x is discrete (in other words, it takes on a fixed number of discrete values) with V finite
possible values.43 The different possible values of x have associated probabilities of occurring in
the population:

Pr (x = xv)

for v = 1, ..., V . (Another way of thinking about this is that Pr(xv) is the frequency of the vth type
of individual in the population.) Furthermore

V∑
v=1

Pr (xv) = 1

In other words, each individual in the population must have one of the V possible values for x. If
the sample is indeed representative of the population of interest, the distribution of the values of
x at the population level can be easily estimated. For instance, if there are Nv individuals in the
sample for whom x = xv,

P̂ r (x = xv) =
Nv

N

is an unbiased estimator of Pr(xv). We can thus easily estimate from our sample the distribution of
observed types of individuals across the population of interest. The remaining question before us is
how we estimate average program impact for each observed type of individual, E(Y 1−Y 0|x = xv).

The average treatment effect for the population is given by

ATE =
V∑
v=1

E
(
Y 1 − Y 0|x = xv

)
· Pr (x = xv)

In other words, the average treatment effect is the sum of the expectations of the treatment effect for
the various types (as captured by x) of individuals in the population, with each of those expectations
weighted by the frequency with which the type (i.e. x = xv) on which it conditions occurs in the
population.

Confronted with the sample design described, matching estimators typically estimate the aver-
age treatment effect in four basic steps:44

1. Estimate program impact Y 1 − Y 0 for each individual in the sample with characteristics
x = xv;

2. Average the resulting individual-level estimates of program impact across each individual
with characteristic x = xv;

3. Weight this average by the estimated probability of the type x = xv occurring in the popu-
lation;

4. Sum these weighted averages across the V types of observed individual.

43Since income could in principle be infinite, this would mean some kind of ‘topcoding’ of income at some value
would be necessary. For instance, income might be recorded in increments of $1,000 from $0 5o $100,000, with all
incomes above $100,000 coded into the 102nd category of v (i.e. v = 102).

44As you begin reading about different matching strategies and applications, it may seem as if there is no consensus
way of combining the individual level estimates of program impact formed in the first step. For instance, some in some
applications the simple average of the individual-level program estimates is computed across the sample. However,
this is essentially equivalent to the four steps described below but simply collapses the last three steps into one. Thus,
most matching estimators implicitly involve these steps, even if some of the steps below are collapsed together or
even expanded into sub-steps.
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While various particular matching exercises may differ in terms of smaller details, they all broadly
follow these steps. Clearly, the foundation of the matching approach is the estimation of impact
at the individual level: if that cannot be done in a fashion that is “right on average” for those
for whom x = xv, then the overall estimate of the average treatment effect at the population level
would be biased.

Let us begin with the first step. Consider the jth individual in the sample. Suppose that the
jth individual is a participant (i.e. Pj = 1 and Yj = Y 1

j ) with observed characteristic xj = xv.
The unobserved counterfactual for that individual is their outcome had they not participated in
the program (i.e. Y 0

j ).

Matching would estimate the jth individual’s outcome in the absence of participation (Y 0
j ) with

the outcome actually experienced by a similar non-participant. This means that, ideally, that non-
participant used to form the estimate of Y 0

j would also exhibit the value xv for x. Suppose, for

instance, that x is income and that income is recorded in $1,000 increments. If the jth individual’s
recorded income was $83,000, matching would seek to form an estimate of Y 0

j from the observed
outcome Y (= Y 0) of non-participant with similar income. Ideally, there would be an individual
with a recorded income of $83,000 among the observed sample of non-participants. If so, that
person’s observed outcome could form the estimate of Y 0

j . If there was more than one individual
with that recorded income, one of their observed outcomes could be randomly selected to serve
as the estimate of Y 0

j . Alternatively, the observed outcomes of all of the non-participants with an

observed income of $83,000 could be averaged to form an estimate of Y 0
j .45 Similarly, had the jth

individual been a non-participant with income equal to $83,000, matching would have sought to
form an estimate of Y 1

j using the outcomes experienced by a participant with an income of $83,000.
Note that these estimates of the counterfactual outcome for each individual would not equal

precisely the counterfactual outcome that that individual actually would have experienced. The
reason is that while we can find a similar individual in terms of the observable x, we cannot
determine who is similar in terms of ε (or, in the case of forming a match for a non-participant,
ε and εY 1). Once an estimate have been formed for all individuals, be they participants or non-
participants, for whom x = xk (in our specific example, income equals $83,000), the next step is to
compute the average of these estimates. This average would be

ˆATEv =
Nv∑
z=1

ˆTEz
Nv

where z indexes the Nv individuals for whom out x = xv of the overall sample of N individuals.
Furthermore,

ˆTEz = Ŷ 1
z − Y 0

z

if the zth individual for whom x = xv is a non-participant (because matching estimates Y 1 for each
non-participant) while

ˆTEz = Y 1
z − Ŷ 0

z

if the zth individual for whom x = xv is a participant (because matching estimates Y 0 for each
participant). The two final steps involve weighting that average by an estimate the Pr(x = xv)
and summing the weighted averages across the V possible values that x can take.

45For simplicity this example considered an income measure involving $1,000 increments. Were income to be
recorded as precisely as possible, the individual might have a much more particular observed income, such as $82,619.
It is quite possible that there would be no observed non-participant with that particular income. Typical solutions
when matching to estimate Y 0

j are to find the non-participant with the closest income to that figure (the “nearest
neighbor”) or average the observed outcomes of several non-participants with incomes in the near neighborhood of
$82,619.
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What remains is to determine the conditions in the context of our model under which this
estimator will provide an unbiased estimate of the average treatment effect. To do this, we will
consider just one component of the estimator (that estimating the average treatment effect for non-
participants for whom x = xv). First, let N1

v be the number of participants and N0
v be the number

of non-participants out of the Nv sampled individuals for whom x = xv (hence, N1
v + N0

v = Nv).
The ATE among those for whom x = xv can then be written

ˆATEv =
Nv∑
z=1

ˆTEz
Nv

=

N1
v∑

w=1

(
ˆTEw
Nv

)
+

N0
v∑

q=1

(
ˆTEq
Nv

)

where w indexes the N1
v participants out of the Nv individuals for whom x = xv and q does the

same for non-participants. We can then write

ˆATEv =

(
N1
v

N1
v

)
·
N1
v∑

w=1

(
ˆTEw
Nv

)
+

(
N0
v

N0
v

)
·
N0
v∑

q=1

(
ˆTEq
Nv

)

=

(
N1
v

Nv

)
·
N1
v∑

w=1

(
ˆTEw
N1
v

)
+

(
N0
v

Nv

)
·
N0
v∑

q=1

(
ˆTEq
N0
v

)

=

(
N1
v

Nv

)
·
N1
v∑

w=1

(
Y 1
w − Ŷ 0

w

N1
v

)
+

(
N0
v

Nv

)
·
N0
v∑

q=1

(
Ŷ 1
q − Y 0

q

N0
v

)

The last expression reflects the fact that, for participants, we observe Y 1 and it is Y 0 (their unob-
served counterfactual outcome) that matching estimates for them. Similarly, for non-participants
we observe Y 0 and matching provides an estimate of their outcome had they participated, Y 1.

Notice that
N1
v

Nv

is just the proportion of the sample of Nv who are participants while

N0
v

Nv

is just the proportion of the same who are non-participants. Behind all of this math is a simple
idea: the estimate of the average treatment effect for those for whom x = xv is just the weighted
average of the estimated treatment effects for participants and non-participants for whom x = xv,
where the weights are the proportions of the sample for whom x = xv who are participants and non-
participants, respectively. These two components of the estimate of the average treatment effect
for those for whom x = xv are the basic building blocks of the overall average treatment effect for
the entire sample. If they cannot be estimated in an unbiased fashion, then the matching-based
estimate of the population (that the overall sample represents) average treatment effect will not be
unbiased.

To focus our thinking a bit, we will consider the conditions required for matching to yield an
unbiased estimate of the average treatment effect for non-participants for whom x = xv. This
means in practice considering the conditions under which

N0
v∑

q=1

(
Ŷ 1
q − Y 0

q

N0
v

)
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is an unbiased estimator of average program impact for non-participants for whom x = xv. Since
we actually observe Y 0 for non-participants (and hence matching does not estimate it), we can
refine our focus even further by asking the conditions under which the matching estimator

N0
v∑

q=1

(
Ŷ 1
q

N0
v

)

provides an unbiased estimate of Y 1 for non-participants for whom x = xv. Earlier we noted that
the matching estimator cannot yield the exact counterfactual outcome for each individual. In some
sense the unbiasedness of the matching estimator rests on the idea that the difference between
the actual counterfactual outcome Y 1

q that the non-participant would have experienced and the

estimate of that counterfactual outcome Ŷ 1
q generated through matching is completely random.

Hence such differences between actual (Y 1
q ) and estimated (Ŷ 1

q ) counterfactual outcomes should
cancel out on average across the non-participants for whom x = xv.

Since the outcome under participation, Y 1, is determined by

Y 1 = β0 + β1 + β2 · x+ β3 · x+ εY 1 + ε

the question is really whether the matching estimate of Y 1 for each non-participant for whom
x = xv correctly captures Y 1, as specified, on average for those non-participants. Since the match
for each non-participant is a randomly selected participant with characteristic x = xv, we can be
assured that the component

β0 + β1 + β2 · x

is captured correctly (since we are fixing x at xv for the non-participant and their participant match
and β0 and β1 are parameters that do not vary in value between participants and non-participants).
The question then becomes whether the values for εY 1 and ε for the typical participant with x = xv

are identical for those of the typical non-participant with the same values for x.
To answer this question, we turn to the program participation decision determination condition

εY 1 + (β3 − γ1) · x− εC ≥ −β1 + γ0

If εY 1 plays a role in the program participation decision (i.e. if εY 1 6= 0) then the participants
would, other things being equal, be those with larger values for εY 1. By dint of this participants
would be individuals that, for a given value of income x, experienced a different average value of Y 1

than non-participants would have had they participated: a participant with characteristic x = xk

would have a larger expected value for Y 1 than a non-participant with same characteristic because
those with larger εY 1 tend to be more likely to participate. We can thus see that εY 1 playing a role
in the program participation decision (which would be the case if εY 1 6= 0) would preclude unbiased
estimation of Y 1 for non-participants using matched participants: it will tend to overestimate Y 1

for non-participants given for each given value of x.
Interestingly, having εY 1 6= 0 would not create problems for estimating Y 0 for participants from

the outcomes experienced by matched non-participants. Thus this aspect of this particular model
would not necessarily create problems for estimating, for example, the average effect of treatment
on the treated (i.e. E(Y 1 − Y 0|P = 1)). We observe E(Y 1|P = 1) from our participant sample.
Hence we need only to find matches for participants among non-participants to form the estimate
of E(Y 0|P = 1). That said, a trivial extension of the model could introduce a similar complication
for estimating Y 0 for participants. For instance, the potential outcomes framework

Y 0 = β0 + β2 · x+ εY 0 + ε
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Y 1 = β0 + β1 + β2 · x+ β3 · x+ εY 1 + ε

would create an analogous problem for estimating Y 0 for participants: the non-participant group
would tend to have larger values for εY 0, implying that their observed experiences in the absence
of the program would serve as a misleading indication of what participants would have experienced
had they not participated. In general, therefore, matching estimators presume the absence of factors
like εY 0 and εY 1 in the potential outcomes (or, put differently, matching estimators will provide an
unbiased estimate of program impact only if there are no factors such as εY 0 and εY 1).

The other major assumption in the random coefficients setting was that ε was unrelated to εC .
In other words, the unobservables governing the potential outcomes could not be related to those
determining the costs of enrollment. This assumption is also necessary to view matching estimates
as unbiased. The reasoning is quite straightforward. Clearly the program participation decision
condition implies that, other things being equal, some types in terms of their value for εC are
more likely to be participants than other types. In other words, the value of εC is likely to differ
between participants and non-participants. In particular, those with lower εC are more likely to
be participants. If ε, which contains the unobservables from the potential outcomes equations, was
related to εC , this could result in different types in terms of ε among participants compared with
non-participants.

For instance, suppose that ε and εC are positively correlated. Therefore those with higher
potential outcomes tend to have higher costs of enrollment. Since participants will tend to have
lower values for εC , this means that they would also have lower values for ε. By the same logic,
non-participants would tend to have larger values for ε. This would complicate estimation of
program impact by matching considerably. For a given value of x, the outcomes observed among
participants (Y = Y 1) would tend to understate the outcomes that non-participants with the same
values for x would have experienced had they participated. By the same token, the outcomes that
non-participants with a given value for income x experienced (Y = Y 0) would tend to overstate
the outcomes that participants with the same value for x would have experienced had they not
participated. The end result is that for each value of x the average treatment effect would be
underestimated.

These assumptions (that εY 1 = 0 and that ε and εC are unrelated) insure that for every type
of individual (as defined by the observed characteristic x) the average values of Y 1 and Y 0 are
the same among participants and non-participants. In other words, across the entire sample the
only reason that the average values of Y 1 and Y 0 might be different between participants and
non-participants is that the average value of the observed characteristic x might differ between
them.

In other words, the average values of Y 1 and Y 0 should be the same between participants and
non-participants with the same value for the characteristic x. There are a number of ways that this
is commonly expressed. Two particularly popular ways of asserting this are

E
(
Y 1, Y 0|x, P

)
= E

(
Y 1, Y 0|x

)
and

Y 0, Y 1 ⊥ P |x

The first states that, conditional on x, program participation status reveals no information about
the expected values of Y 1 and Y 0 (i.e. conditional on x they have the same expected values across
participants and non-participants). In other words, conditional on the observed characteristic x,
Y 1 and Y 0 are mean independent of program participation P . The second condition states that
Y 1 and Y 0 are orthogonal to program participation P conditional on observed x. The precise



132 CHAPTER 4. SELECTION ON OBSERVABLES

meaning of orthogonality in practice has, in the authors’ experience, exhibited a certain elasticity
across the various statistical and econometric manuscripts we have read. In some cases it seems to
have meant independence, in others that a lack of correlation (e.g. Green (2000) p. 229) or even
something in some sense in between the two (e.g. Rodgers et al. 1984).

To fix ideas, let us focus on the mean independence assumption E(Y 1, Y 0|x, P ) = E(Y 1, Y 0|x).
The potential outcomes are, as modelled above, essentially linear functions of the observable x and
a random component ε. When we say that we assume that the potential outcomes are mean inde-
pendent of program participation after factoring in the role of the observable x, this is tantamount
to assuming that the unobservable ε is mean independent of program participation P .

Notice that this is the assumption required to insure the ordinary least squares estimator is
unbiased. Thus we see that unbiased estimation of program impact using the matching estimators
rely on essentially the same assumption as was required to assume that linear regression was yielding
unbiased estimates of program impact.46 In the next section, we will see that the similarity extends
even further: regression can be interpreted as a kind of matching estimator.

4.2.2 Regression as Matching

We have seen that the matching estimator for the average treatment effect is

ˆATE =
V∑
v=1

((
Nv∑
zv=1

ˆTEzv
Nv

)
· P̂ r (x = xv)

)

where
ˆTEzv = Ŷ 1

zv − Y 0
zv

for in the event that the zvth individual in the sample is a non-participant and

ˆTEzv = Y 1
zv − Ŷ 0

zv

in the event that the zvth individual in the sample is a participant.
This is a natural approach to estimation when the estimand (i.e. parameter we wish to estimate

with our sample) is

ATE =
V∑
v=1

E
(
Y 1 − Y 0|x = xv

)
· Pr (x = xv)

Thus the matching estimator is simply attempting to estimate the average treatment effect ATE by
forming estimates of impact at the individual level and then averaging them, where the averaging
process is effectively broken down into two steps with the matching estimator.

We will now demonstrate that the least squares regression estimator can be characterized as a
sort of matching estimator that places slightly different weights on the estimated average treatment
effects for each given value of the observable x.47 For the purposes of this demonstration, we also
temporarily simplify our model somewhat, so that we now assume the framework

Y 0 = β0 + β2 · x+ ε

46Depending on the specific meaning of othogonality considered, the assumption Y 0, Y 1 ⊥ P |x is consistent either
with that required to yield unbiased estimates of program impact in the regression context or simply consistent
estimates. Most of the definitions of othogonality that we have seen would align with the assumptions required for
unbiasedness in the regression context.

47The discussion to follow draws heavily on and is a simplification of p.71-77 of Angrist and Pischke (2009). What
follows can be viewed as a sort of poor man’s version of their more sophisticated discussion of this topic. We highly
recommend their treatment of it to the interested reader.
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Y 1 = β0 + β1 + β2 · x+ ε

This is a modification of the framework introduced in the last section in that it drops the term
β3 · x (in other words, it eliminates the possibility that program impact depends on x). This is an
unnecessary complication for present purposes. The regression specification implied by this is

Y = P · Y 1 + (1− P ) · Y 0

= P · (β0 + β1 + β2 · x+ ε) + (1− P ) · (β0 + β2 · x+ ε)

= β0 + β1 · P + β2 · x+ ε

This is essentially the simple specification that we encountered at the outset of the discussion of
multiple regression in the last section.

As we saw in the regression anatomy discussion in the regression section, the estimate β̂1 can

also be recovered by regressing Y on ˆPRES , where ˆPRES is the predicted residual

ˆPRESi = Pi − P̂i

where P̂i is predicted program participation from the estimated (or “fitted” model) yielded by
regression of P on x. In other words, the ordinary least squares estimate ν̂1 of ν1 from

Yi = ν0 + ν1 · ˆPRESi + ϑi

is equal to β̂1.
The ordinary least squares estimator of ν1 is, of course,

ν̂1 =

∑N
i=1

ˆPRESi · Yi∑N
i=1

ˆPRESi

2 = β̂1

Substituting in
ˆPRESi = Pi − P̂i

we have

ν̂1 =

∑N
i=1

(
Pi − P̂i

)
· Yi∑N

i=1

(
Pi − P̂i

)2
=

∑N
i=1

(
Pi − P̂i

)
· Ŷi∑N

i=1

(
Pi − P̂i

)2
where Ŷi is the predicted Y emerging from the regression of Y on P and x.

This last step might not seem particularly intuitive. It is based on the fact that regression of Y
on P and x is equivalent to regression of Ŷi on P and x in terms of the estimates β̂0, β̂1 and β̂2 that
would be obtained. The reason for this is actually fairly intuitive: regression yields the estimates
β̂0, β̂1 and β̂2 that captures all of the variation in Y that can be captured by P and x. The rest of
the variation in Y not captured by the fitted regression

β̂0 + β̂1 · P + β̂2 · x

is essentially ignored in forming Ŷ . In other words, since Ŷ contains all of the variation in Y that
can be explained by P and x (at least in the context of the linear regression model derived from
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the behavioral model in this subsection) it is also all of the variation required by ordinary least
squares to form estimates of β̂0, β̂1 and β̂2.

The next step requires a bit of trickery regarding Ŷi. Specifically,

Ŷi = Ŷ 0
i + Pi ·

(
Ŷ 1
i − Ŷ 0

i

)
Inserting this into

ν̂1 =

∑N
i=1

(
Pi − P̂i

)
· Ŷi∑N

i=1

(
Pi − P̂i

)2
we have

ν̂1 =

∑N
i=1

(
Pi − P̂i

)
·
(
Ŷ 0
i + Pi ·

(
Ŷ 1
i − Ŷ 0

i

))
∑N
i=1

(
Pi − P̂i

)2
=

∑N
i=1

(
Pi − P̂i

)
· Ŷ 0

i∑N
i=1

(
Pi − P̂i

)2 +

∑N
i=1

(
Pi − P̂i

)
· Pi ·

(
Ŷ 1
i − Ŷ 0

i

)
∑N
i=1

(
Pi − P̂i

)2
The term ∑N

i=1

(
Pi − P̂i

)
· Ŷ 0

i∑N
i=1

(
Pi − P̂i

)2
is equal to zero (because Ŷ 0

i is a function of x alone and hence uncorrelated with the regression
residuals from the regression of P on x48). This leaves us with

ν̂1 =

∑N
i=1

(
Pi − P̂i

)
· Pi ·

(
Ŷ 1
i − Ŷ 0

i

)
∑N
i=1

(
Pi − P̂i

)2

=

∑N
i=1

(
Pi − P̂i

)2
·
(
Ŷ 1
i − Ŷ 0

i

)
∑N
i=1

(
Pi − P̂i

)2
We have now established that the least squares estimator of ν1 is akin to a kind of matching
estimator. Specifically, it involves a weighted average of the estimates of the estimated individual-
level program impacts

Ŷ 1
i − Ŷ 0

i

The weights differ from those used by the matching estimator discussed in the last subsection, but
they are very similar estimators in that they offer weighted averages of the estimated individual-level
program impacts.

The regression weights are effectively related to the conditional (on x) variance of P . This can
be seen more clearly with this simple modification:

ν̂1 =

∑N
i=1

(
Pi − P̂i

)2
·
(
Ŷ 1
i − Ŷ 0

i

)
∑N
i=1

(
Pi − P̂i

)2
48The predicted residuals from any least squares regression are by construction uncorrelated with the regressors.
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=

∑N
i=1

(Pi−P̂i)
2

N−2 ·
(
Ŷ 1
i − Ŷ 0

i

)
∑N

i=1(Pi−P̂i)
2

N−2

The regression thus gives more weight to those whose values of x are associated with larger condi-
tional variance of P . Since P is a binary variable (and its variance is thus equal to P̂ ·(1−P̂ )49), the
regression estimator given the largest weight to values of x at which the treatment probability is clos-
est to 0.5 (i.e. cells where there is the most balance between participants and non-participants).50

Previously, we have seen that unbiased estimation of program impact by matching typically
requires assumptions like those required to hold for unbiased estimation of program impact in
the multiple regression setting. We have just seen that regression can be viewed as a species of
matching with a particular set of weights attached to the K estimates of expected program impact
conditional on the observable x = xv,

E
(
Y 1 − Y 0|x = xv

)
In the next section we will round out the discussion of similarities between matching and regression
by exploring one more way that either can yield a biased impact of average program impact at the
population level.

4.2.3 The Failure of Common Support

We now discuss one other way that either regression or matching could yield a biased estimate
of average program impact at the population level. To approach it, let us return to the program
participation decision rule from the model we introduced in the last subsection. Specifically, an
individual will participate if

εY 1 + (β3 − γ1) · x− εC ≥ −β1 + γ0

Re-arranging, we have

x ≥ 1

(β3 − γ1)
·
(
−β1 + γ0 + εC − εY 1

)
By the same token, the individual would not participate if

x <
1

(β3 − γ1)
·
(
−β1 + γ0 + εC − εY 1

)
49Binary variables have a variance of P · (1− P ), which happens to reach its maximum at P = .5
50This might seem to be in some sense a vacuous example since

Ŷ 1
i − Ŷ 0

i = β̂1

(where β̂1 is the estimate of β1 from regression of Y on P and x) for all individuals i = 1, ..., N and potential values
of x. Hence one could slip β̂1 out of the summation and be left with

ν̂1 =

∑N

i=1

(
Pi − P̂i

)2 · (Ŷ 1
i − Ŷ 0

i

)
∑N

i=1

(
Pi − P̂i

)2 =

∑N

i=1

(
Pi − P̂i

)2 · β̂1∑N

i=1

(
Pi − P̂i

)2
= β̂1 ·

∑N

i=1

(
Pi − P̂i

)2∑N

i=1

(
Pi − P̂i

)2 = β̂1

This is to a certain extent a fair point, but the model was chosen simply to provide the simplest route to illustrating
how the regression estimator can be re-cast as a sort of matching estimator.
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There is no guarantee that these conditions will hold for at least some individuals at every value
of x.

Suppose again that we have a sample of N individuals for whom we observe {Yi, Pi, xi} for
i = 1, ..., N . In other words, we observe the outcome of interest, program participation and a single
observed characteristic. Once again, it would be useful to return to our earlier conceptualization
of x, under which it took on V finite and distinct values (as when we imagined that it represented
income recorded in increments).

Consider one particular value for x, x = xv. The individuals with this value for x are indexed
from j = 1, ..., Nv. Furthermore, let us suppose that individual z among these Nv persons for whom
x = xv has the smallest value for

1

(β3 − γ1)
·
(
−β1 + γ0 + εC − εY 1

)
If

xj <
1

(β3 − γ1)
·
(
−β1 + γ0 + εCz − εY 1

z

)
then no one among those observed with x = xv would choose to participate in the program. (By
similar logic one can imagine values for x where everyone choose to participate and so no one with
that value for x would be a non-participant.)

This is typically referred to in the literature on matching as the Failure of Common Support.
Recall that the support of a random variable is those values for which is has a probability greater
than zero. The Failure of Common Support is so called because it implies that there are values for x
for which the probability that x take on that value is zero for either participants or non-participants.

There is no theoretical reason that this cannot happen and it should be immediately obvious
that it presents a fundamental complication for matching: there is no one among the individuals
for whom x = xv that can be used to form an estimate of Y 1. In other words, referencing the
estimand (i.e. what we seek to estimate), no estimate can be formed for

E
(
Y 1 − Y 0|x = xv

)
because there is no instance in the sample where Y 1 is observed when x = xv.

The failure of common support is actually a potential source of bias to estimates of average
treatment effects in regression models as well, although the reason why is not as immediately obvious
as was the case with matching. To see this, first let us focus on a regression model “saturated” in
x:

Y = β0 + β1 ·+
V−1∑
v=1

(β2v ·Dv) + ε

where Dv is a dummy variable that, for a given individual, equals 1 if x = xv for that individual
and zero otherwise. A model is saturated in some respect if it contains a dummy variable for every
possible value combination that can occur in that respect. Thus, the model above is saturated in x
because it has a dummy variable for every value of x (with one dummy excluded to avoid perfect
collinearity with the constant term). If there were two observed variables, x1 and x2, then a model
saturated in x1 and x2 would include dummy variables for each value of the two variables, as well
as the full set of possible interactions of those dummy variables (see Angrist and Pischke (2009)
for more on saturated models and their possibilities).
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In the last subsection, we saw that the regression estimator of average program impact could
be recast as a sort of matching estimator:

ν̂1 =

∑N
i=1

(
Pi − P̂i

)2
·
(
Ŷ 1
i − Ŷ 0

i

)
∑N
i=1

(
Pi − P̂i

)2
Assume as well that the regression of P on x (yielding P̂ ) is fully saturated in x. With the saturated
model, we have introduced a great deal of flexibility in terms of how x influences P . Indeed, the
specification can capture potentially complex non-linearity to the effect of x on P .

Recall, however, that since P is binary the regression weights, which essentially involve the
variance of P conditional on x can also be written

P̂i ·
(
1− P̂i

)
But this will be equal to zero under the regression of P on x saturated in x at any value of x where
everyone or no one is a participant. Hence no weight is given to those whose values of x are those
for which everyone or no one is a participant. While it is true that this makes little difference in a
framework where everyone has the same program impact (of β1) it could begin to make a significant
difference if impact varied across individuals and, in particular, impact depended on the value of
x.51

In many applications, failures of common support have effectively been hidden and are not
apparent on first glance. For one thing, it is not typical practice in applied empirical work for
regression models to be fully saturated. If, for instance, we had just included x as originally
conceived (income measured in $1,000 increments) as a regressor instead of discretizing it and
fully saturating the regression model in the resulting dummy variables, the contribution of cells
with only or no participants would remain by extrapolation.52 In matching it is common to use
various gimmicks, such as combining cells (i.e. values for x in this context) with small numbers of
observations, which are among those more likely to contain only participants or non-participants,
in some sense disguising the problem. However, while many applications may disguise the problem,
that does not mean that it isn’t present. One should always think of the task of estimating the fully
saturated model with reasonably discretized observed covariates to get some sense of how whether
the failure of common support is likely an issue.

4.2.4 The Propensity Score

To this point, our discussion of matching has focused on forming matches based on a single observed
characteristic x. In many samples, numerous characteristics of the individuals contained within
them might be observed. Matching on these as well allows one to form more and more precise
matches for estimating the counterfactual.53 Indeed, the more precisely one can match the more
plausible is becomes that a characteristic influencing both cost and potential outcomes has not
been omitted and thus left in ε and εC , in the process creating an avenue for correlation between
them and thus introducing bias to the matching estimate.

Furthermore, to a point such matching is quite straightforward. Extending the example above,
suppose that we now observe two characteristics of the individual, income (x1) and age (x2).

51This can be easily demonstrated by thinking about using the regression anatomy formula to estimate separately
β1 and {β21, β22, ..., β2V−1}.

52Indeed, in our example of income measured in increments of $1,000 was top-coded, papering over many possible
failures of common support had we continued discretizing based on increments of $1,000 above the top code value.

53Though matching on a “bad control” presents the same danger as adding a control did in the regression context.
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Suppose as well that income continues to be observed with V finite values (i.e. x1 = xv, v = 1, ..., V ).
Age is observed in W categories (perhaps representing W possible 5 year age ranges), which we
denote by x2 = xw, w = 1, ...,W .

Matching not simply involves finding estimates of the counterfactual outcomes for each the k ·W
possible combinations of the values of x1 and x2. The estimand for this is straightforward:

ATE =
W∑
w=1

(
V∑
v=1

E
(
Y 1 − Y 0|x1 = xv, x2 = xw

)
· Pr (x1 = xv, x2 = xw)

)

The matching estimator matches in form this estimand in the same sense as is the case with one
observable x.

It is not hard to see, however, how adding observables in this fashion can quickly result in a
kind of “curse of dimensionality”. For instance, suppose that for each individual in our sample we
observed income (coded into 5 categories), region of residence (coded into 5 categories), religion
(coded into 4 categories), age (coded into 8 categories), gender (coded into 2 categories) and
education (coded into 5 categories). This implies 5 X 5 X 4 X 8 X 2 X 5 = 8,000 potential observed
“types” of individuals in our data for whom we might need to find a match! (And for the purposes
of many applications, these characteristics don’t even really tell us that much about an individual!)
It is easy to see how this can get out of control (consider this: the addition of just one more observed
characteristic coded into 6 categories would have left us with nearly 50,000 types).

Moreover, as the number of potential combinations of observed categories on which we match
grows, so too does the likelihood of not being able to form counterfactual matches because everyone
in a particular category either always participated or never participated. This can happen for
two reasons. First, there is always the possibility that the theoretical failure of common support
described in the last subsection might occur. Second, in practice matching is usually done with
representative samples. If a certain type of individual occurred rarely enough in the population, this
might mean that most reasonable sized representative sample might not provide a match. Suppose,
for instance, that some potential combination of observed characteristics represented 0.1 percent
of the American population, and that one in five such individuals participate in a program. That
means that across the United States roughly 300,000 individuals fall into that category and 60,000
of them are program participants. But in a random sample of 10,000 Americans we might expect
on average only 10 sample individuals to be of this type, and only 2 of them to be participants. It
is not hard to envision many representative samples that include no individuals of this particular
type who are participants.54

The solution to this is to estimate the counterfactual for each individuals in a sample by match-
ing them to an individual who experienced the counterfactual outcome and had a similar probability
of participation conditional on observed characteristics {x1, x2, ...}. The probability of treatment
conditional on K observed covariates,

Pr (P = 1|x1, x2, ..., xK)

is called the Propensity Score. Matching on the propensity score is probably55 the most common
current approach to matching.

54Another possibility, of course, is that no individual of a given type, participant or non-participant, is observed
at all for a given theoretical combination of observed characteristics. This is a potential problem in terms of bias if
that particular combination of characteristics does in fact occur in the population.

55This is a subjective assessment by the authors; an attempt at estimation of the relative popularity of propensity
scores would be non-trivial.
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The basic steps in propensity score estimation are straightforward. Assume again a familiar
general data setup: we observe for a sample of N individuals an outcome of interest and program
participation {Yi, Pi} (i = 1, ..., N). Furthermore, we assume that we observe K individual-level
characteristics captured in the variables x1, x2, ..., xk. For each of the i = 1, ..., N individuals in the
sample, we thus also observe { x1i, x2i, ..., xki}.

The first step is to decide on a specification for the propensity score model. The dependent
variable is the program participation decision P . One must then decide on the explanatory vari-
ables out of x1, x2, ..., xk to include. In practice, many adopt an “everything and the kitchen sink”
approach and include everything for fear of omitting some factor that differed between participants
and non-participants and influenced outcomes. The obvious alternative is a more parsimonious
strategy that seeks to identify those controls out of x1, x2, ..., xk that really do influence both par-
ticipation and the outcome of interest. Most of these rely (implicitly or explicitly) on appeal to
a model of the participation decision that attempts to identify which variables matter for partici-
pation and which do not do so. A danger with the latter route is that the assumed model of the
participation decision might fail to recognize some observed variable associated with the participa-
tion decision. A danger with the former is the possibility of including a bad control. Some authors
(e.g. Rosenbaum and Rubin 1984) propose iterative approaches whereby controls are added incre-
mentally, and with increasingly rich specifications (e.g. interactions, polynomial terms, etc.) until
participants and non-participants appear similar at various values for the propensity score.

A second question regarding the specification is how to handle any continuous variables that
are included as explanatory variables. There does not seem to be a widely accepted answer to this
question at this point. Some appear to suggest inclusion of polynomial terms for these variables
(e.g. Angrist and Pischke 2009). In practice such variables are often discretized, so that a given
continuous variable enters into the regression as a series of dummies that equals one if the continuous
variable was in some range and zero otherwise.

The final question is how to estimate the regression of P on the selected control variables. In
principle, any binary regression model should be adequate. Some claim that there are advantages
to using the logit regression model. However, this is not really empirical “settled law” at this point.

One the propensity score is estimated, a whole new question arises: what to do with it. This
subsection is focused on matching on the propensity score.56 The idea behind doing so is that those
with similar propensity score values will have similar background characteristics.

This is the balancing property of the propensity score. The basic idea is that, for a given
value of the propensity score, participants and non-participants should have similar distributions
of background characteristics. Many tests of this property are essentially tests of whether the
propensity score satisfies this property. We will briefly, and perhaps more intuitively than deeply
technically, describe such tests.57 The tests generally take several approaches to the balancing
property. Most obviously, some tests simply compare whether the mean of the various covariates
is the same between participants and non-participants at a given propensity score. One could, for
instance, focus on a standardized difference along the lines of

xP − xNP√
s2P+s

2
NP

2

where x is one of the included controls in the propensity score, xP and xNP are the means of
x among participants and non-participants, and the ss are their corresponding standard errors

56In the final subsection of this section, we will discuss some other applications of the propensity score.
57See Austin (2008), Austin (2009) and Austin (2011), and work cited within them, for much more in depth,

interesting discussion of tests of the balancing property.
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(Austin 2011). This would be computed at various values for the propensity score (for instance,
one could identify strata of the value of the propensity score based on noticeable mass points for
the score) to see if average values for x appeared to be the same at various values for the propensity
score. Other tests involve examining differences in higher moments of controls at various value for
the propensity score, the c-statistic for the propensity score,58 etc. The balancing property should
be checked not only among the full sample (among whom the propensity score model is estimated)
but also any final sample of matches formed on the propensity score for estimating program impact.

We refer the reader to sources such as Austin (2011) for deeper consideration of the specifics of
specification of the propensity score, and content ourselves for now with this very brief overview.
First, there has been so much methodological work in this area that a careful treatment would
consume the manual. Second, there is no real “pay off” in the end in that there is no real received
consensus about best practice (something to bear in mind before becoming to rigidly defensive
about one’s own approach in a particular application or too harshly critical of that adopted by
others). This extends beyond the question of getting the least biased estimate of program impact
but also the most efficient one (i.e. one with the least sampling variation).59

Matching on the propensity score is in principle a rather simple affair: for each individual
in the sample for whom an estimate of program impact needs to be formed, find an individual
or individuals experiencing the counterfactual outcome with a similar propensity score. Use the
counterfactual outcome(s) that that individual (or those individuals) experienced as an estimate of
the outcome the first individual, for whom we wish to form an estimate of program impact, would
have experienced under the counterfactual state. For example, we would estimate the outcome a
non-participant would have experienced had he or she participated by the outcome or outcomes
experienced by a participant or participants with a similar propensity score.

Unfortunately, beyond this simple overall logic lies what can seem a bewildering set of alternative
proposed practices for forming a match. Briefly, these might include:

• “Nearest Neighbor” matching: matches each individual for whom a program impact estimate
must be formed with the individual with the closest propensity score value experiencing the
counterfactual outcome;

• Caliper matching: involves finding matches within a certain distance from the propensity
score value for the individual requiring a match;

• Kernel and local linear matching: uses weighted contributions from all individuals in the
counterfactual state to form an estimate of the counterfactual outcome.

This is in no sense a complete list of the alternatives. Indeed, even the alternatives listed above
frequently involve further choices. For instance, for caliper matching, how wide does one set the
search distance? Does one select the closest match within the caliper, average across all of the
matches within the caliper distance, or form some sort of weighted average of the cases with
propensity scores within the caliper distance? The considerations are not limited to identification
of matching methods either. For instance, one must decide whether to match with replacement or

58The c-statistic is, in the context, basically a measure of the ability of the propensity score model to discriminate
between participants and non-participants. For instance, in many instances, the c-statistic is the fraction of pairs of
observations where one participates and one does not among which the propensity score indeed predicted a higher
probability of participation for the participant. Austin (2011), citing various studies, reasonably question how this
reveals much about whether the specification of the propensity score model is correct in the sense that it needs to be
for the purpose of covariate balancing between participants and non-participants.

59See Hahn (1998), Hirano, Imbens and Ridder (2003) and Angrist and Hahn (2004) for key econometric papers
focused on efficiency and the propensity score.
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not. A related consideration is “greedy” versus “optimal” matching. Under greedy matching, one
would select, for instance, the nearest neighbor to each successive individual requiring a match,
even if the individual providing the match might have served as a closer match for a subsequent
individual on the list requiring matches.

There is, to our knowledge, no consensus regarding best practice across these many possibilities,
either in general or for any particular application. At this point, we make a gross generalization that
is somewhat editorial in nature and likely would not hold in many applications, but is nonetheless
probably a reasonable useful rule of thumb: the choice of matching method probably does not
matter much. In our own work, we have often found that the differences in results from alternative
matching methods were modest compared with, for instance, the difference of any or all of them
with the estimate of program impact yielded by simple comparison of average outcomes between
participants and non-participants. Certainly one should examine the robustness of the estimate of
program impact to alternative matching methods.

As a final note, matching on the propensity score is just as subject to concerns regarding failures
of common support. Specifically, there may be some ranges for the predicted propensity score that
appear only among participants or non-participants. For instance, it is not uncommon that, in a
propensity score model that does appear capable of discriminating between participants and non-
participants (as evidenced by, for instance, the c-statistic), the maximum propensity score value
observed among participants well exceeds that for non-participants. In such cases, matches may
not be possible. For instance, participants with propensity score values in the upper ranges not
seen among non-participants do not have a match among non-participants with comparable score.
Similarly, the lower range of scores for non-participants may well fall below the minimum score
values of participants, making it impossible to form matches for the non-participants with these
low scores.

If one’s goal was to form an estimate of the average treatment effect for the population of interest
represented by the sample, these failures to match can present a significant problem. Program
impact at the individual level can be computed only for those for whom a match can be formed. This
subsample is likely non-random, and hence not necessarily (in fact, probably not) representative
of the population of interest as a whole. It is thus difficult to know for whom program impact is
being estimated.

4.2.5 Other Propensity Score Strategies

There are a few other ways in which the propensity score is applied to achieve “balancing” of
observed types between participants and non-participants. First, in what is probably best viewed
as only a slight variation on matching itself, the sample is sometimes stratified according to the
various values for the propensity score. For instance, it is common practice to stratify individuals
in a sample according to quantiles of the propensity score, with quintiles as a popular choice
(Austin, 2011). The average outcomes for participants and non-participants are then averaged
in each of these strata and their difference represents program impact within that strata. The
idea behind this is that within each of these strata the participants and non-participants will have
approximately similar background characteristics. The strata specific estimates of program impact
are then averaged across strata. Rosenbaum and Rubin (1984) have found that this basic approach
removes most of the bias associated with observed confounders. One can also compute a weighted
average of the estimates from the various strata. For instance, when the contribution of each strata
is weighted by the number of participants in each can yield an estimate of the average effect of
treatment on the treated (Imbens 2004).

Another increasingly popular application of the propensity score is to weight the sample ac-
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cording to the inverse of the probability of participation. The general idea behind this is to use the
weights as a means of correcting for the imbalance of observed characteristics between participants
and non-participants. To begin with, one would expect that the average propensity score value
among participants likely exceeds that among non-participants. The weighting estimator would
thus assign lower weight to participants with larger values for the propensity score more distant
from those found among non-participants. A similar weighting scheme applies to non-participants.
For instance, for the purpose of estimating the average treatment effect, Angrist and Pischke (2009)
present the following simple expression:

E
(
Y 1
i − Y 0

i

)
= E

(
Yi · Pi
PSi

+
Yi · (1− Pi)

1− PSi

)
where PSi is the propensity score for the ith individual. In practice one would compute the sample
analog by simply averaging

Yi · Pi
P̂Si

+
Yi · (1− Pi)

1− P̂Si
(where P̂Si is the predicted, which is also to say estimated, propensity score) across the sample of
i = 1, ..., N individuals. Notice that this will assign rather lower weights to participants with very
high propensity scores and non-participants with very small scores. A similar weighting estimator
can be derived for the average effect of treatment on the treated. A major advantage of these
estimators is that they sidestep all of the tedious (and somewhat arbitrary) decisions regarding
matching methods.

Finally, the propensity score is sometimes used as a regressor to summarize the effect of con-
founders. The classic basic model is as follows

Yi = β1 + β2 · Pi + β3 · P̂Si + εi

where P̂Si is the estimated propensity score for individual i. Variations on this include specifications
with polynomial terms for the estimated propensity score. Some authors (e.g. Wooldridge 2001)
have questioned whether this approach is truly superior simply to including the regressors (specified
richly using discretization or polynomial terms for continuous regressors, interactions, etc.) used
in forming the propensity score rather than the propensity score itself.

4.2.6 An Empirical Example

In this subsection we provide an empirical illustration (provided in the STATA do-file 4.6.do) of
the performance of various estimators involving the propensity score. These are compared with
results from naive (in the sense of ignoring possible bias from confounding variables) estimation
of program impact by comparison of average outcomes between participants and non-participants
and regression of the outcome of interest on an indicator of program participation. They are also
compared with results from regression of the outcome of interest on program participation and the
confounders.

Once again, we simulate our data. Our sample size this time is 5,000 individuals. We begin
by parameterizing a framework for the determination of program participation and outcomes of
interest. We consider 5 potential confounders x1, ..., x5. The basic framework for determining the
potential outcomes and cost of enrollment is:

Y 0 = 2 + 1.5 · x1 − 1.5 · x2 + 1.2 · x3 + 2.4 · x4 + 3 · x5 + εY

Y 1 = 4 + 1.5 · x1 − 1.5 · x2 + 1.2 · x3 + 2.4 · x4 + 3 · x5 + εY
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C = 1− .35 · x1 + .15 · x2 − .25 · x3 + x4 − .5 · x5 + εC

where the εs are independently drawn from the normal distribution with variance 100 and the xs
are drawn from the standard normal distribution. An individual participates in the program if
Y 1 − Y 0 − C > 0.

Summary statistics for this sample are provided in Outputs 4.28 and 4.29. Just over half the
sample (57.48 percent) wind up as participants in the program. εY has roughly the same value
among participants and non-participants, while the average value of εC is notably higher among
non-participants. The former reflects the fact that εY will cancel out in the term Y 1 − Y 0 and
hence play no role in program participation while εC clearly is a determinant of participation.
The difference in the average value of εC suggest that those facing higher unobserved costs of
participation are less likely to participate. There appear to be differences in the average values of
the xs between the two samples, reflecting the systematic role that they play in shaping cost.

STATA Output 4.28 (4.6.do)

. sum P

Variable Obs Mean Std. Dev. Min Max

P 5000 .5748 .4944227 0 1

STATA Output 4.29 (4.6.do)

. by P, sort: sum epsilony epsilonc x_1 x_2 x_3 x_4 x_5 y0 y1

-> P = 0

Variable Obs Mean Std. Dev. Min Max

epsilony 2126 .0015076 .9870313 -3.186304 3.263425
epsilonc 2126 .8940831 .6064059 -.4481313 3.188653

x_1 2126 -.0493891 .9775606 -3.357434 3.393645
x_2 2126 .0243869 1.003398 -3.328795 4.167702
x_3 2126 -.0708252 1.021268 -3.579602 2.998349

x_4 2126 -.1914471 .9939377 -3.204001 3.135751
x_5 2126 -.0683721 .9766107 -3.224039 3.700645
y0 2126 1.147294 6.640788 -21.94452 23.39046
y1 2126 3.147294 6.640788 -19.94452 25.39046

-> P = 1

Variable Obs Mean Std. Dev. Min Max

epsilony 2874 .0113242 .9967888 -3.81654 3.641588
epsilonc 2874 -.6759093 .6708789 -3.918931 .7832473

x_1 2874 .043291 1.005641 -3.15619 4.076474
x_2 2874 -.0300237 .9875699 -3.379955 3.25495
x_3 2874 .033678 1.000967 -3.113853 3.630332

x_4 2874 .1354334 .9809225 -3.150622 3.915892
x_5 2874 .0735013 .9943433 -3.794222 3.449271
y0 2874 2.752551 6.710933 -20.50695 25.65636
y1 2874 4.752551 6.710933 -18.50695 27.65636

We begin by considering true program impact. This is simply the average of Y 1 − Y 0 across



144 CHAPTER 4. SELECTION ON OBSERVABLES

the entire sample. Normally one does not observe true impact with real world data (if nothing else,
with real world data, for any given individual in a sample one can observe Y 1 or Y 0 but not both).
True program impact across the sample is 2. Against this benchmark, we first estimate program
impact simply by comparing the average value of the observed outcome Y between participants
and non-participants and regressing Y on P alone (with the result in Output 4.30). Both exercises
suggest that an estimation of program impact that ignores the differences between participants and
non-participants in the average values of the xs yields a program impact estimate of 3.605257, far
above true average program impact.

STATA Output 4.30 (4.6.do)

. reg Y P

Source SS df MS Number of obs = 5000
F( 1, 4998) = 355.83

Model 15883.7256 1 15883.7256 Prob > F = 0.0000
Residual 223102.857 4998 44.6384268 R-squared = 0.0665

Adj R-squared = 0.0663
Total 238986.583 4999 47.806878 Root MSE = 6.6812

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 3.605257 .1911236 18.86 0.000 3.23057 3.979943
_cons 1.147294 .1449015 7.92 0.000 .8632238 1.431365

We next consider estimation of the propensity score. To do this, we perform logit regression of
P on x1, x2, ..., x5. Since our model makes clear that all observed exogenous variables x are indeed
confounders, we are able to sidestep the nettlesome task of deciding which covariates to include in
the specification (a process for which, as we have explained, there is no clear, accepted practice or
guidance). The outcome of this regression, as well as the computation of the actual propensity score
(which, in this setting, is the predicted logit probability of P conditional on x1, x2, ..., x5) is provided
in Output 4.31. The propensity score has a (slightly) higher average value among participants than
non-participants, a reassuring result that suggests that the model is at least roughly correct in
that it appears that those that it predicts would be more likely to participate are indeed so (one
can think of this as a “poor man’s c-statistic”60). Note, however, that there is modest failure of
common support: there are values for the propensity score seen only among (at the lower range)
non-participants or (at the upper range) participants.

We next consider regression of Y on P and x1, x2, ..., x5 (in other words, on program participa-
tion and all of the potential confounders). The results are displayed in Output 4.32. Control for
the confounders in a regression has resulted in a remarkably accurate estimate of program impact
at 2.033182. We also consider regression of Y on P and the propensity score, with the results
displayed in Output 4.33. Once again the program impact estimate, at 2.030544, is quite close to
the truth. Next we attempt propensity score weighting estimator, with the results displayed in
Output 4.34. It too yields a very good estimate of program impact at 2.042988.

We now turn to explicit propensity score matching. In STATA, this was traditionally accom-
plished with user-written commands, such as psmatch2 (Leuven and Sianesi 2003) or pscore
(Becker and Ichino 2002).61 We report results from the new matching command under STATA’s
recently introduced package of treatment effect commands. We consider nearest neighbor matching

60We joke, of course.
61nnmatch (Abadie et al. 2004) is a user-written command that performs covariate matching in STATA.
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with based on 1 match (the default) and 7 matches. The results are displayed in Output 4.35. The
estimates of the average treatment effect are, at 1.91782 and 2.085387, also quite close to the true
average treatment effect. Interestingly, adding more matches did not seem to change performance
much in terms of accuracy (at least in the limited context of this one example).

STATA Output 4.31 (4.6.do)

. logit P x_1 x_2 x_3 x_4 x_5

Iteration 0: log likelihood = -3409.5749
Iteration 1: log likelihood = -3314.2849
Iteration 2: log likelihood = -3314.0938
Iteration 3: log likelihood = -3314.0938

Logistic regression Number of obs = 5000
LR chi2(5) = 190.96
Prob > chi2 = 0.0000

Log likelihood = -3314.0938 Pseudo R2 = 0.0280

P Coef. Std. Err. z P>|z| [95% Conf. Interval]

x_1 .0970201 .0294121 3.30 0.001 .0393735 .1546667
x_2 -.0561588 .0293117 -1.92 0.055 -.1136088 .0012912
x_3 .1144228 .0289201 3.96 0.000 .0577405 .1711051
x_4 .3455699 .0299497 11.54 0.000 .2868697 .4042702
x_5 .1566446 .0296904 5.28 0.000 .0984524 .2148368

_cons .3129883 .0292129 10.71 0.000 .2557321 .3702446

. predict PS
(option pr assumed; Pr(P))

. by P, sort: su PS

-> P = 0

Variable Obs Mean Std. Dev. Min Max

PS 2126 .5531868 .0963548 .2650811 .8151766

-> P = 1

Variable Obs Mean Std. Dev. Min Max

PS 2874 .5907881 .092297 .3191199 .8678818

Finally, we consider the consequences of only partial control for observed confounders. Specifi-
cally, we re-estimate the models with controls only for x1, x2, x3. The estimated treatment effects
are as follows:

• Regression of Y on P and x1, x2, x3: 3.271049;

• Regression of Y on P and the propensity score based on x1, x2, x3: 3.268763;

• Weighting estimate for propensity score based on x1, x2, x3: 3.265033;

• Nearest neighbor propensity score (single) matching based on x1, x2, x3: 3.141292;

These results illustrate the key challenge with selection on observables estimators: we must control
for every confounder, or else they cannot be expected to yield accurate estimates of average program
impact. In general, the earlier lesson that the pattern of bias is unpredictable depends heavily on
what confounders are and are not controlled for, and as such is essentially impossible to gauge from
a specific set of estimates involving partial control for confounders.
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STATA Output 4.32 (4.6.do)

. reg Y P x_1 x_2 x_3 x_4 x_5

Source SS df MS Number of obs = 5000
F( 6, 4993) = 784.67

Model 115982.991 6 19330.4985 Prob > F = 0.0000
Residual 123003.592 4993 24.6352076 R-squared = 0.4853

Adj R-squared = 0.4847
Total 238986.583 4999 47.806878 Root MSE = 4.9634

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 2.033182 .144723 14.05 0.000 1.749461 2.316902
x_1 1.435243 .0706837 20.31 0.000 1.296672 1.573814
x_2 -1.615602 .0706278 -22.87 0.000 -1.754064 -1.477141
x_3 1.147418 .0696116 16.48 0.000 1.010949 1.283887
x_4 2.447409 .0712529 34.35 0.000 2.307722 2.587096
x_5 3.03955 .071203 42.69 0.000 2.899961 3.179139

_cons 2.015215 .1088433 18.51 0.000 1.801834 2.228596

STATA Output 4.33 (4.6.do)

. reg Y P PS

Source SS df MS Number of obs = 5000
F( 2, 4997) = 1603.19

Model 93410.4865 2 46705.2433 Prob > F = 0.0000
Residual 145576.096 4997 29.1326989 R-squared = 0.3909

Adj R-squared = 0.3906
Total 238986.583 4999 47.806878 Root MSE = 5.3975

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 2.030544 .1573897 12.90 0.000 1.721991 2.339097
PS 41.8792 .8118259 51.59 0.000 40.28766 43.47074

_cons -22.01972 .4640971 -47.45 0.000 -22.92956 -21.10989

STATA Output 4.34 (4.6.do)

. g wght=(Y*P)/PS -(Y*(1-P))/(1-PS)

. su wght

Variable Obs Mean Std. Dev. Min Max

wght 5000 2.042988 15.21309 -92.91533 43.05652

We have thus seen that the various selection on observables methods all performed roughly
equally well. When all confounders were indeed controlled for performance was quite good in the
sense of yielding an accurate estimate of true average program impact (another way of saying this is
that the selection on observables models quite effectively addressed the bias to the estimate of pro-
gram impact yielded by simple comparison of outcomes between participants and non-participants).
However, in some sense this was a somewhat easy challenge since the program impact was constant.
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We leave as an exercise for the reader expanding the example in STATA do-file.

STATA Output 4.35 (4.6.do)

. teffects psmatch (Y) (P x_1 x_2 x_3 x_4 x_5)

Treatment-effects estimation Number of obs = 5000
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 1

AI Robust
Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
P

(1 vs 0) 1.91782 .1725876 11.11 0.000 1.579554 2.256085

. teffects psmatch (Y) (P x_1 x_2 x_3 x_4 x_5), nn(7)

Treatment-effects estimation Number of obs = 5000
Estimator : propensity-score matching Matches: requested = 7
Outcome model : matching min = 7
Treatment model: logit max = 7

AI Robust
Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
P

(1 vs 0) 2.085387 .1478581 14.10 0.000 1.79559 2.375184

4.3 Some Closing Thoughts

This chapter has considered models that assume only selection on observables into program par-
ticipation status. In other words, they assume that we can “measure all that matters” in terms of
characteristics that shape both the outcome of interest and the participation decision. It should be
immediately obvious that this is an incredibly strong assumption. Indeed, in many instances it is
simply not credible.

The discussion was still important, however, for two reasons. First, the selection on observables
models provide a framework through which one can quite usefully approach many of the other
quasi-experimental estimators considered in this manual. Put simply, without a solid foundation in
the mechanics, properties and implications of the selection on observables models, it is difficult to
develop a solid grasp of the other quasi-experimental methods we consider. Second, as a practical
matter selection on observables approaches are used in real-world impact evaluations: in some
instances their core assumption is more palatable, while in other cases there is simply no other
practical option than to pursue a selection on observables estimation strategy.

A implicit theme of this chapter has been a kind of skepticism about the importance of the
differences between the alternative selection on observables models. This is a point that can be
easily pushed too far. Indeed, there are abundant examples in the impact evaluation literature
where different selection on observables estimators have yielded meaningful differences in impact
estimates, performed very differently in terms of things like sampling variation, etc.

Nonetheless, the authors remain struck more by the central importance of the assumption com-
mon to all selection on observables models than the specific ways in which they approach estimation
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differently. Our own gross casual empiricism has suggested to us that often the differences between
the estimates generated by the various selection on observables estimators are probably of second
order importance compared with how the estimates generated by these models differ either from
those that ignore selection altogether (such as simple comparison of average outcomes between par-
ticipants and non-participants) or those that rely on alternative quasi-experimental identification
strategies. We take this opportunity, however, to concede that there are many very smart people
who would probably vehemently disagree with this rather breezy assessment.



Chapter 5

Within Estimators

We now turn our attention to a broad class of quasi-experimental estimators often referred to
as “within” estimators. These estimators have essentially two common characteristics. First,
they typically assume that for a given unit of observation (e.g. the individual) the source of
bias with simple estimation of program impact (for instance, by straightforward comparison of
average outcomes between participants and non-participants or simple regression of the outcome
on an indicator of program participation) does not vary for that unit of observation. Consider, for
instance, the possibility for variation over time. Some individual characteristics, such as income,
might vary over time. Others, such as genetic endowment, are essentially fixed for a given individual
and hence cannot vary over time for them. These models assume that the unobserved variable
driving bias in simple estimation of program impact is so fixed.

The other major feature of within models is that they rely fundamentally on variation within
units of observation, as opposed to variation across units of observation (for instance at a point
in time). For instance, these models might identify program impact by considering how variation
in program participation over time for individuals is associated with variation over time in the
outcome of interest for those individuals. This is as opposed to what we might refer to as “cross
sectional” identification, whereby program impact is identified by considering how variation in
program participation across units of observation (e.g. individuals) is associated with variation in
outcome levels across those units of observation.

Cross sectional identification hence involves asking whether those who participate in a program
have different average outcomes levels from those who do not do so. Within estimation asks whether
changes in participation status appear to be associated with changes in outcome levels.

These models are often referred to as “fixed effects” estimators. A motivation for this terminol-
ogy is the recognition that the potential confounding unobservable is fixed for the unit of observation
(e.g. family background is fixed over time for the individual, genetic endowment is fixed across
pairs of twins, etc.). However, there are other models that typically carry different labels but share
this basic characteristic with the so-called fixed effects estimators. “Within” estimators are hence
a broader class than “fixed effects” estimators.

5.1 Classic Models

5.1.1 The First Differences Estimator

We begin our discussion with an estimator that many would likely not consider a classic fixed-
effects estimator: the first differences estimator. We start with this estimator primarily because it
provides a particularly clear and convenient framework for examining how within models estimate

149
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program impact. There is a heavy degree of commonality to the fixed effects and first differences
approaches: the two estimators rely on an identical assumption about the source of bias from
straightforward estimation of program impact evaluation, offer very similar remedies and carry
similar data requirements.

Let us start, as has become our custom, with a model of potential outcomes and the costs of
participation. Although within estimators can be operationalized in a number of senses,1 the usual
conceptualization of the variation is with respect to time. We will focus on variation over time for
individuals from a sample of individuals observed at more than one point in time. We therefore
need to introduce a time dimension to our variables. Thus, for instance, the outcome of interest is
Yit, signifying that this is the outcome of interest observed for individual i at time t.

With this modification in place, we consider the following potential outcome and cost equations:

Y 0
it = β0 + β2 · x1it + β3 · x2i + β4 · µi + εYit

Y 1
it = β0 + β1 + β2 · x1it + β3 · x2i + β4 · µi + εYit

where x1it is a time-varying observed individual characteristic, x2i is a fixed observed individual
characteristic, µi is a fixed unobserved individual characteristic and εYit is time-varying unobservable.
Note that we have eschewed certain features considered in the last chapter. For instance, the
observables do not necessarily influence program impact. The within-framework can accommodate
possibilities such as this, but it is not essential to the core points that we need to establish in this
chapter.

The cost of participation is given by

Cit = γ0 + γ1 · x1it + γ2 · x2i + γ3 · µi + εCit

At any given time period t individual i choose to participate (i.e. Pit will equal 1) if

Y 1
it − Y 0

it − Cit > 0

or
β1 − γ0 − γ1 · x1it − γ2 · x2i − γ3 · µi − εCit > 0

There are a few important features to note about this. First, the observed individual characteristics
x1it and x2i influence participation and hence we would expect that, other things being equal, the
average values of these characteristics should differ between participants and non-participants.
There will thus clearly be selection into program participation based on observables. Second,
the same is true of the fixed unobservable µi: it influences the participation decision and hence
would be expected to differ in terms of average value between the participants. Third, by dint
of the fact that they are fixed, fixed characteristics such as x2 and µ cannot explain variation in
program participation over time for the ith individual. They cannot explain variation in outcomes
or participation over time for an individual.

Let us now derive a regression specification. The observed outcome is

Yit = Pit · Y 1
it + (1− Pit) · Y 0

it

= Pit ·
(
β0 + β1 + β2 · x1it + β3 · x2i + β4 · µi + εYit

)
+ (1− Pit) ·

(
β0 + β2 · x1it + β3 · x2i + β4 · µi + εYit

)
1For instance, one might consider variation within a household, community, etc.
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= β0 + β1 · Pit + β2 · x1it + β3 · x2i + β4 · µi + εYit

It is already clear that unbiased estimation of program impact (i.e. unbiased estimation of β1)
might be a bit tricky. Unbiased estimation would require the independence or mean independence
of program participation Pit and µi and the independence or mean independence of Pit and εYit . Per
the latter condition, since εYit played no role in determining program participation, the only readily
plausible way that the independence or mean independence of Pit and εYit could be violated if there
was some sort of relationship between εYit and εCit . We rule out this possibility by assumption.

The sticky wicket is then presented by µi. It clearly plays a role in shaping the program
participation decision and hence should be correlated with Pit. Thus, to recover an unbiased
estimate of β1, µi must either be controlled for or somehow purged from the regression specification
that we actually estimate. Since µi is unobserved, explicitly controlling for it is clearly not an option.

Within estimators take the alternative route: they purge µ from the regression equation that
we will actually estimate. Suppose that we observed a sample of N individuals at two points in
time, t = 1 and t = 2. Specifically, suppose that we observed {Yit, Pit, x1it, x2i} for i = 1, ..., N
individuals at times t = 1, 2.

To fix ideas, let us focus on regression modelling for the ith individual out of the N individuals
in our sample. Fixed effects would essentially “subtract” (or, more precisely, “difference”) the
regression models from the two time periods for that ith individual in the sample:

Yi2 = β0 + β1 · Pi2 + β2 · x1i2 + β3 · x2i + β4 · µi + εYi2
− Yi1 = β0 + β1 · Pi1 + β2 · x1i1 + β3 · x2i + β4 · µi + εYi1

∆Yi = 0 + β1 ·∆Pi + β2 ·∆x1i + β3 · 0 + 0 + ∆εYi

yielding a final first difference specification to be estimated of

∆Yi = β1 ·∆Pi + β2 ·∆x1i + ∆εYi

where “∆” indicates “change in”.2 In the context of this new regression model, we form a new
dependent variable, which is the change in the value of Y between time periods t = 1 and t = 2
for individual i, or ∆Yi. For concreteness we have focused on the ith of the N individuals, but first
differencing would involve this subtraction exercise for all N individuals in the sample, yielding the
final first differencing specification, which would be estimated by regressing ∆Y on ∆P and ∆x1
using the information on the N individuals in our sample.

There are several really important things to recognize about this new regression specification.
First, and by far most importantly, the troublesome unobserved confounder µi does not appear
in the new specification. It played a role across time in determining the average level of Y for
individual i, but because it was fixed over time really could not explain variation in Y over time
for that individual. For instance, it might have explained why Y was persistently high over time
for that individual, but could not explain why Y changed for that person from time period 0 to 1.

Within estimators sweep out potentially unobserved confounders that do not vary over time,
shifting focus fundamentally from identification of the determinants of levels (i.e. identifying pro-
gram impact as the statistical relationship between program participation and levels of the outcome
of interest across individuals) to identification of the determinants of changes (i.e. how, across in-
dividuals, changes in program participation status appear to be associated with changes in the
outcome of interest). The differencing exercise has created a new regression specification that fo-
cuses on variation “within” each individual. By doing so, it has swept out the influence of all “fixed
effects”: factors shaping the outcome that do not vary for the individual (for instance across time).

2Therefore, for any given variable W , ∆W means “change in W”.
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It has thus removed or purged the influence of any confounding unobservable that does not vary
for the individual over time. Of course, it has also removed or purged the influence of any observed
characteristic that does not vary over time.3

Notice that the time-varying unobservable εY has not been purged out of the regression spec-
ification. This would be extremely problematic if εY had been correlated with εC , leading to an
extremely important caveat about within models such as the first differenced regression: they do
not address any endogeneity bias associated with time-varying unobservables (i.e. time-varying
unobserved characteristics). More broadly (since these models do not always involve exploiting
change over time4) the unobserved confounder must be fixed within the units of observation for
which the subtraction exercise above is performed. Any remaining error term that varies within
the unit of observation (e.g. as εYit varies over time as captured by ∆εYi ) must be independent of
∆Pi. This is the critical identifying assumption of within models: any unobserved confounder (i.e.
an unobserved variable not independent of participation) associated with the observed regressor of
interest (in our case program participation P ) must be fixed across the units of observation (e.g.
fixed across time for the individual).

If εY and P are independent (or at least mean independent) then so are ∆εY and ∆P . Es-
timation of β1 by least squares regression of ∆Y on ∆P and ∆x1 (more generally, regression of
the change in the outcome of interest on the change in program participation and observed, time-
varying characteristics) will then yield an unbiased estimate β̂1 of β1.

5 If, however, ∆P and ∆εY

were somehow correlated then the within estimate of β̂1 would be biased and inconsistent. Within
approaches such as first differencing thus involve the potentially strong assumption that any con-
founding unobserved characteristic is fixed (i.e. does not vary) across the observations for a given
unit of observation.

Another major feature of within models already evident from this specification is a loss of
information for estimation. For the hypothetical ith individual that we observe at t = 1 and t = 2,
we had two observations (one from time period t = 1 and one from time period t = 2) for that
individual to contribute to the estimation of

Yit = β0 + β1 · Pit + β2 · x1it + β3 · x2i + β4 · µi + εYit

However, the act of differencing the regression specification between time period t = 2 and t = 1
required two observations but yielded only one observation to contribute toward estimating the
parameters of

∆Yi = β1 ·∆Pi + β2 ·∆x1i + ∆εYi

In general, estimation of within models involves a loss of observations toward estimation equal to
the number of units of observations.

Suppose we observe 10,000 individuals for several time periods. Pursuit of a within estimation
strategy such as first differencing involves the loss of 10,000 observations. Suppose, for instance,
that we observe Yit and Pit for 10,000 individuals at three points in time, t = 1, 2, 3. For the

3Some have faulted within estimators for removing the influence of fixed observed covariates. The argument is
typically that they preclude consideration of the role of these fixed observed variables in shaping outcomes. While
this can be a legitimate concern, we would emphasize that the ultimate goal in this setting is evaluation of program
impact. Therefore the unbiased estimation of program impact, rather than developing a broader understanding of
the overall determinants of Y , should be the priority.

4For instance, one could imagine that t indexed two members of family i, for which µi was an unobserved family-
level characteristic that commonly influenced the program participation decisions and outcomes of the members of
household i.

5We leave the proof of this as an exercise for the reader. It involves a trivial extension of the derivation of the
conditions for unbiasedness introduced in the last chapter.
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purposes of simply regressing Y on P we have at our disposal 30,000 observations. However, for
regressing ∆Y on ∆P we have only 20,000 observations. The reason is that we can difference twice,
once by differencing Y and P between t = 3 and t = 2 and again by differencing the same between
t = 2 and t = 1. So while Y and P are observed three times for each individual, ∆Y and ∆P are
observed only twice for each individual.

The loss of information associated with within estimation is a frequent criticism of the approach.
One must recognize a kind of trade-off to this business. Adopting the within approach purges the
effect of fixed confounding unobserved characteristics. To the extent that the central assumption
of the within approach (i.e. that those fixed unobservables were the source of endogeneity bias
to the estimate of program impact from simply regressing Y on P ) is correct this strategy yields
an unbiased estimate of program impact where one would not obtain one otherwise. However, it
does so at the cost of a lower number of observations and hence a larger variance to the estimate of
program impact, other things being equal. It is possible that within estimators can deliver estimates
that, while unbiased (assuming the key assumption supporting the fixed effects estimator holds),
are much further from true program impact than what one might obtain simply by regressing Y
on P with the full set of observations.

Our first difference specification has been motivated by the circumstance where one observes
data on a sample of N individuals for two time periods (t = 1 and t = 2). We derived a basic
first difference regression specification using as a specific motivating example the ith individual out
of the N persons in our sample. Thus, the unit of observation in this motivating example is the
individual, and the within variation utilized by the first difference regression model is the change
over time in the outcome of interest (∆Y ), program participation (∆P ) and in any time-varying
observed characteristic of the individual (e.g. ∆x1).

Since within estimation such as first differencing relies on variation over time at the unit of
observation (e.g. the individual) it is necessary to observe the outcome of interest, program par-
ticipation and key time-varying characteristics for those units of observations at more than one
point in time. Such a data framework, wherein units of observation are observed more than once,
is variously referred to as longitudinal, repeated measures and panel data.

Specifically, suppose that we have a sample of individuals who were selected for a baseline round
of data collection and then re-interviewed at various intervals over time. The various time-period
specific samples are usually referred to as panels. When they are the same size for each time period
(i.e. each individual is interviewed in each round of data collection), the samples from the different
time periods are referred to as balanced panels.6

This is not the only way that within variation could have been conceptualized. For instance,
this same basic data structure (i.e. a unit of observation observed twice) might have involved a
sample of N pairs of monozygotic twins. First differencing (within pairs of twins) would then sweep
out any unobserved confounding variable common to the two twins (such as genetic endowment).

In general, within estimation is a data intensive strategy in that it requires more than one
observation per unit of observation. Without this it is impossible to construct variables (e.g.

6Sometimes one of these three terms (longitudinal, repeated measures, panel data) would seem to fit more naturally
a given sample design. This is not necessarily important from a substantive estimation standpoint, but is still useful
for thinking precisely about alternative data designs. The designs can certainly come in various forms. For instance,
for a sample of adult women, their fertility and family planning participation over several years could, at two extremes,
be captured either by interviewing them annually in each of those years or retrospectively asking them about their
fertility and program participation at the conclusion of that time frame. All three terms fit the first design well, while
the latter design is perhaps less usefully described as panel because a panel of women was not followed over time for
it. For the purpose of estimating many models of program impact, there is no difference in principle between the two
designs. In practice, however, issues such as attrition in the panel approach or recall bias under the recall approach
may dictate a preferred data design.
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∆Y ) that somehow reflect within (i.e. within the unit of observation) variation. Typically, this
extensive data requirement is from a practical standpoint the main impediment to implementing
this approach to program impact estimation. Many datasets involve just one observation per any
meaningful conceptualization of the unit of observation.7

A less than desirable feature of our particular regression specification,

∆Yi = β1 ·∆Pi + β2 ·∆x1i + ∆εYi

is that it lacks a constant term. Were one to estimate this model (by regressing ∆Y on ∆P and
∆x1i with no constant term) there are all sorts of complications.8

Fortunately a natural extension of the model generates a constant.9 Consider this simple
extension of the potential outcomes framework:

Y 0
it = γ + β0 · t+ β2 · x1it + β3 · x2i + β4 · µi + εYit

Y 1
it = γ + β0 · t+ β1 + β2 · x1it + β3 · x2i + β4 · µi + εYit

The main differences between these potential outcome equations and those introduced at the outset
of this section is that the constant from the original potential outcome framework is now represented
by γ while the term β0 · t has been introduced. β0 · t captures a possible time trend to the potential
outcomes.

This modified potential outcomes framework leads to a new regression specification. We proceed
as we have in the past:

Yit = Pit · Y 1
it + (1− Pit) · Y 0

it

= Pit ·
(
γ + β0 · t+ β1 + β2 · x1it + β3 · x2i + β4 · µi + εYit

)
+ (1− Pit) ·

(
γ + β0 · t+ β2 · x1it + β3 · x2i + β4 · µi + εYit

)
= γ + β0 · t+ β1 · Pit + β2 · x1it + β3 · x2i + β4 · µi + εYit

The time trend to the potential outcomes thus translates into a time trend term in the regression
specification motivated by the potential outcome equations.

Suppose again (for simplicity) that there are only two time periods, t = 1 and t = 2. Subtracting
the regression terms at t = 1 from those at t = 2 (i.e. taking the first difference between the
regression terms in the two time periods), we have

Yi2 = γ + β0 · 2 + β1 · Pi2 + β2 · x1i2 + β3 · x2i + β4 · µi + εYi2
− Yi1 = γ + β0 · 1 + β1 · Pi1 + β2 · x1i1 + β3 · x2i + β4 · µi + εYi1

∆Yi = 0 + β0 + β1 ·∆Pi + β2 ·∆x1i + 0 + 0 + ∆εYi

yielding a final specification to be estimated of

∆Yi = β0 + β1 ·∆Pi + β2 ·∆x1i + ∆εYi

Thus, a fairly trivial (and frankly behaviorally reasonable10) extension of the potential outcomes
specification yields a first difference regression specification with a constant term.

7Although within variation can sometimes be captured by recall questions such as fertility histories.
8For instance, measures of the explanatory power of the model are considerably complicated.
9We did not introduce this extension at the outset to avoid sowing confusion by trying to illustrate too many

things at once.
10The time trend can be thought of as the cumulative or overall net effect of time-varying determinants of the

potential outcome that are subject to some sort of trend.
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In general it is a good idea to include a constant term in a within regression estimation.11 The
reason is fairly simple: a time trend could represent a kind of omitted variable. For instance, if
there is a trend to y and x, when one regresses y on x alone x will serve two empirical roles: as
control for itself and as a proxy for the role of time in shaping y.

At this point we pause to consider a numerical example. This example is found in STATA do-file
5.1.do. The departure point is the following model of potential outcomes and costs of participation
for 5,000 individuals observed at two points in time (t = 0 and t = 1):

Y 0
it = 2 + 1.5 · x1it + 2 · x2i + 3 · t+ µi + εYit

Y 1
it = 4 + 1.5 · x1it + 2 · x2i + 3 · t+ µi + εYit

Cit = 1 + 1.5 · x1it − 1 · x2i + µi + εCit

where the xs and µ are independently normally distributed with mean 0 and variance 4 (i.e. x, µ
∼ N(0,4), ruling out any endogeneity to x) and the εs are independently normally distributed with
mean 0 and variance 9 (i.e. ε ∼ N(0,9), ruling out any kind of relationship between εY and εC).12

There are a few important things to note about this setup. First, since Y 1
it − Y 0

it = 2, the cost
equation is essentially determining the role that the xs and µ play in shaping the participation
decision. Second, the fact that Y 1 − Y 0 = 2 for every individual in the sample at each of the
two points in time means that true average program impact is 2. Third, there is a time-varying
individual-level observed characteristic (x1it) and a fixed (with respect to time) individual-level
observed characteristic (x2i). Fourth, there is a fixed individual characteristic (µi). Finally, there
is a time trend to the potential outcome equation (thus creating scope for a constant term to the
eventual first differenced regression specification).

We begin with some summary statistics, displayed in Outputs 5.1, 5.2 and 5.3. Output 5.1
presents participation patterns. 57.41 percent of the sample participated in the program. Given the
focus of fixed effects models on within variation (in this case such variation would be over time for
each individual), we also consider the degree to which the participation decision changed over time.
To do this, we create the variable avgP, which is the average of the program participation variable
P for each individual across time periods t = 0 and t = 1. If the individual never participated, avgP
=0 since Pi0 = Pi1 = 0. Similarly, avgP =1 if the participated in both, time periods. However, if
they participated in one time period but not the other (i.e. if they participated half of the time),
then avgP=.5. We can see from Output 5.1 that 38.5 percent of the individuals in the sample
changed their participation status between time periods t = 0 and t = 1, while 23.34 percent never
participated and 38.16 participated throughout the two time periods.

Turning to Output 5.2, we consider the averages of the key variables by participation status.
First, and perhaps most importantly, notice that the fixed unobserved characteristic µ has a very
different average between participants and non-participants (-0.5097 against 0.7596, respectively).
Participants and non-participants thus differ by a factor that influences outcomes and would not be

11STATA and other commercial statistical analysis packages typically estimate a regression constant by default. In
STATA, suppression of the estimation of the constant in ordinary least squares regression via the regress command
is achieved with the noconstant option, as in

reg y x, nocon

Since the default is typically to include the constant, the analyst usually does not need to do anything explicit to
insure its estimation.

12As usual, the parameters of this simulation are chosen fairly randomly. We encourage the reader to experiment
with the code, changing parameters.
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observable were this real-world data.13 They also differ by their average values for the observables
x, which is not a big surprise given the role that these play in systematically influencing the cost
of participation, the main driver of the participation decision (unsurprisingly, non-participants are
those facing higher costs of participation).

STATA Output 5.1 (5.1.do)

. * Basic summary statistics: participation

. tab P

P Freq. Percent Cum.

0 4,259 42.59 42.59
1 5,741 57.41 100.00

Total 10,000 100.00

. ta avgP if t==0

avgP Freq. Percent Cum.

0 1,167 23.34 23.34
.5 1,925 38.50 61.84
1 1,908 38.16 100.00

Total 5,000 100.00

In Output 5.3 we consider potential correlations among the unobservables and between any of
them and program participation P . Unsurprisingly, P is highly correlated with µ and εC : these
are two direct determinants of the cost of participation. It is essentially uncorrelated with εY ,
which should be the case since εY cancels out of Y 1 − Y 0 and thus plays no role in the program
participation decision. At 0.0155, εY is essentially uncorrelated with εC (and even that figure is just
an artifact of the comparatively small sample size and would tend toward 0 were one to increase
the sample size).

We now turn to regression estimation of program impact. Specifically, we consider regressing
Y on P , the observed characteristics (x1 and x2) and time t. Analysis of the correlations between
program participation P and the unobservables suggests that one avenue (correlation between εY

and P ) for endogeneity bias to the regression estimate of program impact is not much of a concern.
However, another (a correlation between µ and P ) might be a real issue. We thus find ourselves
in essentially exactly the circumstance for which fixed effects regression was designed: a potential
confounding unobservable fixed across the observations for the unit of observation. In Output 5.4
we report results from regressing Y on P , t and the observables (x1 and x2) across the entire sample
of 10,000 person years.

Plainly, the estimate of program impact (β̂1 =.1176989 ) is only a small fraction of the true
impact value of 2. The estimate of β1, β̂1, obtained from this regression exercise is biased. As we
explained in Chapter 2 and reminded the reader in Chapter 4, results such as those in Output 5.4
are not proof of bias. Bias is the condition where β̂1 is systematically off in the sense that it is
“wrong on average” or

E
(
β̂1
)
6= β1

To establish biasedness in the context of this numerical example, we would thus need to simulate

13We assume that µ is unobservable. Technically, we can observe it (because we simulated the data, including the
observations for µ) but we assume that it would be unobservable were this a real world sample. It represents the
fixed unobserved factors not observable in real world data.
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many samples in the same fashion, estimate program impact via regression for each, and average
the program impact estimates across the many simulated samples. If that average did not equal
β1 (or 2, in our example) this would be evidence of bias. Nonetheless, the specific estimate in
our example, which is well wide of the mark in terms of true program impact, is indicative of
endogeneity bias.

STATA Output 5.2 (5.1.do)

. * Basic summary statistics: variable means

.

. by P, sort: summarize Y y1 y0 c x* mu epsilon*

-> P = 0

Variable Obs Mean Std. Dev. Min Max

Y 4259 4.334862 6.289426 -19.78382 27.70201
y1 4259 6.334862 6.289426 -17.78382 29.70201
y0 4259 4.334862 6.289426 -19.78382 27.70201
c 4259 5.799442 2.931449 2.000205 18.66917

x_0 4259 1 0 1 1

x_2 4259 -.7789652 1.918122 -7.832516 6.227447
x_1 4259 1.093233 1.778053 -6.753155 8.420812
mu 4259 .7596287 1.869981 -6.420361 7.176875

epsilony 4259 -.0218311 3.000047 -9.903225 9.97731
epsilonc 4259 1.620998 2.671566 -7.540022 11.37924

-> P = 1

Variable Obs Mean Std. Dev. Min Max

Y 5741 4.753798 6.330902 -17.66687 26.38768
y1 5741 4.753798 6.330902 -17.66687 26.38768
y0 5741 2.753798 6.330902 -19.66687 24.38768
c 5741 -2.42331 3.206232 -18.52968 1.998094

x_0 5741 1 0 1 1

x_2 5741 .4933008 1.885407 -6.450185 6.910412
x_1 5741 -.7917423 1.756657 -8.078415 5.318276
mu 5741 -.5096796 1.91944 -8.141914 6.990262

epsilony 5741 -.0242761 2.978858 -10.44104 10.15385
epsilonc 5741 -1.232716 2.684475 -11.58986 7.975534

The question is the source of the bias. One possibility with which we quickly dispense is the
possibility that it is somehow a result of the longitudinal nature of the data. This could be plausible
in the event that time t was somehow a “bad control”. This could emerge if program participation
was somehow correlated with time and time was somehow correlated with a confounding unobserv-
able. However, the framework for our example does not introduce either possibility. Moreover, the
program impact estimates generated when Y is regressed on P , x1 and x2 for each time period
separately are also poor. For instance, Output 5.5 provides the regression for just the subsample
at time period t = 0.

Given that there is no correlation between program participation P and the time-varying com-
ponent of the unobservable, εY , the only plausible avenue for omitted variable bias is the correlation
between P and µ. In other words, endogeneity bias is driven by a fixed (with respect to time) un-
observed characteristic. The framework thus indeed reflects exactly the circumstance required for
first differencing (and, more generally, within approaches) to yield an unbiased estimate of program
impact.
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STATA Output 5.3 (5.1.do)

. * Correlations among unobservables

.

. corr P mu epsilony epsilonc
(obs=10000)

P mu epsilony epsilonc

P 1.0000
mu -0.3139 1.0000

epsilony -0.0004 -0.0209 1.0000
epsilonc -0.4661 -0.0060 0.0155 1.0000

STATA Output 5.4 (5.1.do)

. * Cross sectional regression

. reg Y P x_1 x_2 t

Source SS df MS Number of obs = 10000
F( 4, 9995) = 5752.43

Model 278115.263 4 69528.8157 Prob > F = 0.0000
Residual 120808.106 9995 12.086854 R-squared = 0.6972

Adj R-squared = 0.6970
Total 398923.369 9999 39.8963265 Root MSE = 3.4766

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .1176989 .0851456 1.38 0.167 -.0492036 .2846013
x_1 1.290954 .020018 64.49 0.000 1.251715 1.330193
x_2 2.170245 .0186083 116.63 0.000 2.133769 2.206721

t 3.010955 .0695422 43.30 0.000 2.874638 3.147272
_cons 3.093416 .0700131 44.18 0.000 2.956176 3.230656

STATA Output 5.5 (5.1.do)

. * Cross sectional regression, first time period only

. reg Y P x_1 x_2 if t==0

Source SS df MS Number of obs = 5000
F( 3, 4996) = 3535.00

Model 128127.316 3 42709.1054 Prob > F = 0.0000
Residual 60360.6217 4996 12.0817898 R-squared = 0.6798

Adj R-squared = 0.6796
Total 188487.938 4999 37.7051286 Root MSE = 3.4759

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .2413616 .1207878 2.00 0.046 .0045645 .4781587
x_1 1.310641 .0287164 45.64 0.000 1.254345 1.366938
x_2 2.148506 .0262096 81.97 0.000 2.097124 2.199888

_cons 3.020308 .0861149 35.07 0.000 2.851485 3.189131
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To explore this alternative, we compute

∆Yi = Yi1 − Yi0

∆Pi = Pi1 − Pi0
and

∆x1i = x1i1 − x1i0
to estimate the fixed-effects specification

∆Yi = β0 + β1 ·∆Pi + β2 ·∆x1i + ∆εYi

This is thus the specification that purges the confounding unobservable µ, as well as the fixed (with
respect to time) observable x2.

Results for the regression of ∆Y on ∆P and ∆x1 are presented in Output 5.6. The first
differenced specification has yielded the program impact estimate 1.841112. This is in the near
neighborhood of the true value of 2. We can thus see that the differencing estimate is far closer
to the truth than the estimate yielded by straightforward “cross-sectional” regression of Y on P ,
x1 and x2 with the full set of 10,000 individual/time observations or the 5,000 observations from
either time period.

STATA Output 5.6 (5.1.do)

. * The basic first differenced regression

. reg deltaY deltaP deltax_1 if tt<`T´

Source SS df MS Number of obs = 5000
F( 2, 4997) = 1875.21

Model 67089.3154 2 33544.6577 Prob > F = 0.0000
Residual 89388.6453 4997 17.8884621 R-squared = 0.4287

Adj R-squared = 0.4285
Total 156477.961 4999 31.3018525 Root MSE = 4.2295

deltaY Coef. Std. Err. t P>|t| [95% Conf. Interval]

deltaP 1.841112 .1131854 16.27 0.000 1.619219 2.063005
deltax_1 1.469093 .0249797 58.81 0.000 1.420122 1.518065

_cons 3.031345 .0598335 50.66 0.000 2.914045 3.148645

The results in Output 5.6 are based on the manual calculation of the first differences. However,
STATA has a command, xtivreg with the fd, option, that automates the calculation of the
first difference model. Estimation results using this command are provided in Output 5.7. This
command might be a preferred route for users uncomfortable with computing first differences (which
is quite understandable with more complex datasets and many time periods). One complication
of the syntax for this command is driven by the fact that it was written with an entirely different
estimation method (instrumental variables, which will be discussed in the next chapter) in mind.
That is the reason for the seemingly strange line of code (t=z). This is necessary because the
command requires the structure of instrumental variables (which will become clearer in the next
chapter). To satisfy this requirement, simply choose a variable that is unnecessary to the regression
and, in parentheses, set it equal to a variable set to 1 (i.e. z was generated with the code generate
z=1). We chose t for this purpose because, as we have seen, it is captured by the constant term in
any case.
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STATA Output 5.7 (5.1.do)

. xtset ID t
panel variable: ID (strongly balanced)
time variable: t, 0 to 1

delta: 1 unit

. xtivreg Y P x_1 (t=z), fd reg
note: z omitted because of collinearity

First-differenced IV regression
Group variable: ID Number of obs = 5000
Time variable: t Number of groups = 5000

R-sq: within = . Obs per group: min = 1
between = 0.2222 avg = 1.0
overall = 0.2222 max = 1

Wald chi2(2) = 3750.42
corr(u_i, Xb) = 0.0426 Prob > chi2 = 0.0000

D.Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

t
D1. 0 (omitted)

P
D1. 1.841112 .1131854 16.27 0.000 1.619273 2.062951

x_1
D1. 1.469093 .0249797 58.81 0.000 1.420134 1.518053

_cons 3.031345 .0598335 50.66 0.000 2.914073 3.148616

sigma_u 5.4190635
sigma_e 4.2294754

rho .62144596 (fraction of variance due to u_i)

Instrumented: t
Instruments: P x_1 t

The extension to more than two time periods is fairly trivial. For instance, with 5 time periods,
4 differences can be calculated (the difference in variables values between the 1st and 2nd, 2nd
and 3rd, 3rd and 4th and, finally, 4th and 5th time periods). In other words, where there were
5 observations per individual for the cross-sectional regression, there are 4 for the first-differenced
regression. Thus, the loss of observations evident in the two time period case extends to the many
time period case: one time period’s observation is lost for each individual.

5.1.2 Linear Fixed Effects

Thus far, we have discussed the first differencing approach to dealing with fixed unobservables.
This has involved essentially taking the pairwise difference of the key variables (the outcome Y ,
program participation P and any time-varying observables x1) over the two time periods in our
example, though the extension to many time periods is trivial. We started with the first differencing
approach mainly for expositional simplicity: it is perhaps the most intuitively straightforward way
to demonstrate how the within approach flushes out fixed confounders such as µ. Moreover, most
of the implications of the first differencing approach generalize to alternative within approaches.

In this subsection we discuss two classic linear “fixed effects”14 estimation approaches: “de-

14The label “fixed effects” is probably popular as much as anything to differentiate so called estimators from first
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meaning” and use of dummy variables to control for unobserved fixed characteristics.15 By “linear”
we mean that the estimator is typically applied in the context of linear regression.16

The first alternative we consider is often referred to as demeaning. Put simply, to demean
the key covariates (the outcome Y , program participation P and time-varying covariates x1) each
observation for each of the key covariates has the mean of that variable for the unit of observation
subtracted from it.

To fix ideas, let us return to the problematic (from the standpoint of obtaining an unbiased
estimate of program impact β1) basic cross-sectional specification

Yit = β0 + β1 · Pit + β2 · x1it + β3 · x2i + β4 · µi + εYit

Define Yi as follows:

Yi =
T∑
t=1

Yit
T

where T is the number of time periods over which individual i is observed. In other words, Y i is the
mean value of the outcome Y for individual i across the T time periods over which that individual
is observed. For simplicity, assumed that all i = 1, ..., N individuals in our hypothetical sample
are observed for each of time period captured in the sample. In other words, assume that we have
balanced panels in our sample.

Yi is simply the average of Y for the ith individual in the sample. For instance, in the setting
of two time periods considered in the last subsection, t = 1, 2, Yi is

Yi =
Yi1 + Yi2

2

We can similarly imagine averages for all of the right hand side variables in the specification: Pi,
x1i, x2i, µi, and εi

Y . Because x2 and µ do not vary for each individual, note that

x2i = x2i

and
µi = µi

The remaining variables do vary over time for the individual, and hence will not equal their averages.
Let us now consider the basic regression specification, but applied to the de-meaned variables:17

Yit − Yi = β0 · (1− 1) + β1 ·
(
Pit − Pi

)
+ β2 · (x1it − x1i) + β3 · (x2i − x2i) + β4 · (µi − µi) + εYit − εiY

differencing.
15There are yet other “fixed effects” approaches, such as the use of “sufficient statistics”, which we discuss briefly

in a subsequent subsection.
16However, one of these estimators is sometimes applied to address fixed unobservables in the context of non-linear

models.
17This new specification can easily be motivated in a manner analogous to first differencing. First, beginning with

Yit = β0 · 1 + β1 · Pit + β2 · x1it + β3 · x2i + β4 · µi + εYit

we have
Yi = β0 · 1 + β1 · Pi + β2 · x1i + β3 · x2i + β4 · µi + εYi

Subtracting the second equation from the first yields the specification in the main body of the text:

Yit = β0 · 1 + β1 · Pit + β2 · x1it + β3 · x2i + ...

− Yi = β0 · 1 + β1 · Pi + β2 · x1i + β3 · x2i + ...

− Yit − Yi = β0 · (1− 1) + β1 ·
(
Pit − Pi

)
+ β2 · (x1it − x1i) + β3 · (x2i − x2i) + ...
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However, since
x2i = x2i

and
µi = µi

we know that
µi − µi = 0

and
x2i − x2i = 0

Therefore, the de-meaned regression specification reduces to

Yit − Yi = β0 · (1− 1) + β1 ·
(
Pit − Pi

)
+ β2 · (x1it − x1i) + εYit − εiY

Finally, the term β0 · (1− 1) is motivated by the idea of demeaning the constant term, which is
based on a column of 1s (and hence has a mean of 1, across individuals or even the entire sample).
This leads to our final specification

Yit − Yi = β1 ·
(
Pit − Pi

)
+ β2 · (x1it − x1i) + εYit − εiY

This specification has purged the confounding unobservable µ, as well as the non-time varying
observable x2.

The unbiasedness of this estimator hinges on the same assumption as in the first differencing
case: that the source of endogeneity bias to the estimate of program impact from straightforward
regression of Y on P , x1 and x2 is the fixed (i.e. non-time varying) unobserved confounding
characteristic µ. In other words, it assumes that P and any time-varying unobservable such as εY

are independent (i.e. that εY is not an unobserved confounder).
Most of the implications of the first difference model carry over to this model as well. For

instance, the model still involves the loss of the information from one time period’s worth of
observations, though the reason can seem a bit less straightforward in this case. To illustrate, let
us focus on the regressor

Yit − Yi
By definition,

T∑
t=1

(
Yit − Yi

)
= 0

In other words, for individual i the deviations of their values of Y from the average over time for
Y sum to zero. This means, however, that one observation for individual i does not really provide
truly independent information since it must insure that this condition holds. Focusing on the
T th observation (i.e. assuming that {Yi1, Yi2, ..., YiT−1} are independently determined and hence
provide T − 1 truly independent units worth of information about variation in Y ), it must be the
case that

YiT = Yi −
T−1∑
t=1

(
Yit − Yi

)
Therefore, YiT does not, from this perspective, provide truly independent information about vari-
ation in Y : its value is locked down by the need to insure that the condition

T∑
t=1

(
Yit − Yi

)
= 0
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holds. However, such a loss of one truly independent observation will occur for each individual,
resulting in the loss of N units of information (i.e. one time period worth of information) from
demeaning.

Estimation of this demeaned model is relatively simply. Define

Ẏit = Yit − Yi

Ṗit = Pit − Pi
and

˙x1it = x1it − x1i
These can be calculated by straightforward means: simply subtract from the value of the variable
for individual i at time t that variable’s mean over time for individual i. Estimation is then simply
a question of regressing Ẏ on Ṗ and ẋ1 while suppressing the constant term.

To illustrate this estimator in action, we continue the two time period example from the last
section. As a reference, recall that the estimate of program impact from the basic first-differenced
model was 1.841112. To begin with, in Output 5.8, we report results from regression of ẏ on Ṗ
and ẋ1 with no constant (because our model as posed does not necessarily imply the presence of a
constant). (For reference, the variable ydot in the output represents ẏ, Pdot represents Ṗ , etc.)
The estimate of program impact is, at 1.70862, close to that from first differencing but not the
same.

STATA Output 5.8 (5.1.do)

. * Simple demeaned fixed effects with no time trend or constant

. reg ydot Pdot x_1dot, nocon

Source SS df MS Number of obs = 10000
F( 2, 9998) = 2411.38

Model 32633.3214 2 16316.6607 Prob > F = 0.0000
Residual 67651.8475 9998 6.76653806 R-squared = 0.3254

Adj R-squared = 0.3253
Total 100285.169 10000 10.0285169 Root MSE = 2.6013

ydot Coef. Std. Err. t P>|t| [95% Conf. Interval]

Pdot 1.70862 .0984207 17.36 0.000 1.515695 1.901544
x_1dot 1.441792 .0217219 66.38 0.000 1.399213 1.484372

An obvious possible reason for the discrepancy between the fixed effects estimation by demean-
ing and the first difference estimator is the absence of a time trend in the specification we have
attempted thus far. The addition of a constant term is a bit less straightforward in the classic fixed
effects model. One possibility would be simply to add demeaned time as an explanatory variable
(while still suppressing estimation of the constant). Results for this are presented in Output 5.9.

The estimate of program impact, at 1.84112, now matches that yielded by first differencing.
There is a reason for this: with only two time periods, first differencing and the demeaned fixed ef-
fects estimator are equivalent. This can be seen through the prism of any of the variables considered
in the regression specification. For instance,

Yi =
Yi1 + Yi2

2
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Then,

Yi1 − Yi = Yi1 −
Yi1 + Yi2

2
=

2 · Yi1 − Yi1 − Yi2
2

= −1

2
(Yi2 − Yi1)

Similar math can be applied to Yi2, x1i1, x1i2, Pi1 and Pi2. The point is that the variables in the
demeaned estimation are simply those present in the first differenced model multiplied by −(1/2).

STATA Output 5.9 (5.1.do)

. * Simple demeaned fixed effects with time trend

. reg ydot Pdot x_1dot t_dot, nocons

Source SS df MS Number of obs = 10000
F( 3, 9997) = 4144.76

Model 55590.8463 3 18530.2821 Prob > F = 0.0000
Residual 44694.3227 9997 4.4707735 R-squared = 0.5543

Adj R-squared = 0.5542
Total 100285.169 10000 10.0285169 Root MSE = 2.1144

ydot Coef. Std. Err. t P>|t| [95% Conf. Interval]

Pdot 1.841112 .0800222 23.01 0.000 1.684252 1.997972
x_1dot 1.469093 .0176607 83.18 0.000 1.434475 1.503712
t_dot 3.031345 .0423023 71.66 0.000 2.948424 3.114266

This straightforward math, and hence the equality of the first difference and demeaned fixed
effects estimators, breaks down with more than two time periods. Hence, while they are both
unbiased estimators of program impact under broadly similar assumptions (namely, that P and µ
might be correlated but P and εY are independent) the actual values of the estimates of program
impact will typically differ between them in samples where the taking of differences or demeaning
involves more than two observations per unit of observation (e.g. more than two time periods
observed per individual).

In Outputs 5.10 and 5.11 we provide the regression estimates from first differencing and de-
meaning, respectively, when the empirical example is extended to three time periods.18 The first
differenced and demeaned estimates are no longer equal (at 2.053201 and 2.009387, respectively).
Interestingly, both estimates are also much closer to the true value of 2. This largely reflects a
precision gain from the increase in sample size.

Many commercial statistical packages have purpose-built fixed effects estimation routines. For
instance, in STATA the demeaned model can be estimated via the xtreg command with the
fe option. Typically, these packages handle all of the steps in fixed effects regression, including
demeaning.

To explore STATA’s packaged fixed effects estimation routine, we first estimate the regression
of demeaned Y on demeaned P , x1 and t without suppression of estimation of the constant (in
doing so we continue with the three time period extension of our basic example). The results are
reported in Output 5.12. There are two major things to note about the results in Output 5.12.
First, the coefficient estimates for Ṗ , ẋ1 and ṫ (represented in Output 5.12 by Pdot, x 1dot and

18To generate 3 time periods worth of output, simply change line 17 of the STATA do-file 5.1.do to

loc T=2

to

loc T=3

By changing the value of T one can consider any number of scenarios in terms of numbers of time periods.
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t dot, respectively) are essentially the same as in Output 5.10. In other words, the addition of a
constant has not really influenced these estimates. Second, the estimate of the constant is tiny and
insignificant (it is not everyday in applied empirical work that you see a t-statistic of 0.00 or, by
extension, a p-value of 1.000).

STATA Output 5.10 (5.1.do)

. * The basic first differenced regression

. reg deltaY deltaP deltax_1 if tt<`T´

Source SS df MS Number of obs = 10000
F( 2, 9997) = 3869.25

Model 138924.79 2 69462.3948 Prob > F = 0.0000
Residual 179470.407 9997 17.9524264 R-squared = 0.4363

Adj R-squared = 0.4362
Total 318395.196 9999 31.8427039 Root MSE = 4.237

deltaY Coef. Std. Err. t P>|t| [95% Conf. Interval]

deltaP 2.053201 .0796707 25.77 0.000 1.89703 2.209371
deltax_1 1.513142 .0177598 85.20 0.000 1.47833 1.547955

_cons 3.007354 .0423764 70.97 0.000 2.924287 3.09042

STATA Output 5.11 (5.1.do)

. * Simple demeaned fixed effects with time trend

. reg ydot Pdot x_1dot t_dot, nocons

Source SS df MS Number of obs = 15000
F( 3, 14997) = 8976.49

Model 161309.426 3 53769.8087 Prob > F = 0.0000
Residual 89833.1105 14997 5.99007205 R-squared = 0.6423

Adj R-squared = 0.6422
Total 251142.536 15000 16.7428358 Root MSE = 2.4475

ydot Coef. Std. Err. t P>|t| [95% Conf. Interval]

Pdot 2.009387 .0648643 30.98 0.000 1.882245 2.136528
x_1dot 1.504437 .01454 103.47 0.000 1.475937 1.532937
t_dot 3.007264 .0244816 122.84 0.000 2.959277 3.055251

In Output 5.13 we estimate the demeaned fixed effects model using STATA’s xtreg package with
the fe option. The coefficient estimates for program participation P , the time-varying characteristic
x1 and time t and are essentially identical to those for Ṗ , ˙x 1 and ṫ (represented in Output 5.11
by Pdot, x 1dot and t dot, respectively) in Outputs 5.10 and 5.11. Note, however, that the
t-statistics for those estimates generally run noticeably smaller than the corresponding t-statistics
in Outputs 5.10 and 5.11. The reason is that in the regressions in Outputs 5.11 and 5.12 the
dependent variable and regressors were demeaned before estimation, which then proceeded, both
in terms of calculation of parameter estimates and their standard errors, by means of standard
ordinary least squares estimation. Crucially, standard ordinary least squares estimation assumes
that each observation provides 1 observation’s worth of new and unique information regarding those
variables. However, we have just seen that this is not actually the case with demeaned variables:
for each unit of observation with the respect to which demeaning occurs, 1 observation is not
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truly independent. Naive estimation by ordinary least squares, as in the case of Outputs 5.11 and
5.12, thus produces standard error estimates based on an exaggerated sense of the information
for parameter estimation actually contained in the data. This will lead to standard errors biased
downward. Purposeful fixed effects packages such as xtreg explicitly recognize this information
loss in computing standard errors.19

STATA Output 5.12 (5.1.do)

. * Simple demeaned fixed effects with time trend

. reg ydot Pdot x_1dot t_dot

Source SS df MS Number of obs = 15000
F( 3, 14996) = 8975.89

Model 161309.426 3 53769.8087 Prob > F = 0.0000
Residual 89833.1105 14996 5.99047149 R-squared = 0.6423

Adj R-squared = 0.6422
Total 251142.536 14999 16.743952 Root MSE = 2.4475

ydot Coef. Std. Err. t P>|t| [95% Conf. Interval]

Pdot 2.009387 .0648665 30.98 0.000 1.88224 2.136533
x_1dot 1.504437 .0145405 103.47 0.000 1.475936 1.532938
t_dot 3.007264 .0244824 122.83 0.000 2.959276 3.055253
_cons 2.14e-08 .0199841 0.00 1.000 -.0391713 .0391713

STATA Output 5.13 (5.1.do)

. xtset ID
panel variable: ID (balanced)

. * STATA Xtreg, time covariate

. xtreg Y P x_1 t, fe

Fixed-effects (within) regression Number of obs = 15000
Group variable: ID Number of groups = 5000

R-sq: within = 0.6423 Obs per group: min = 3
between = 0.1571 avg = 3.0
overall = 0.3393 max = 3

F(3,9997) = 5983.73
corr(u_i, Xb) = 0.0408 Prob > F = 0.0000

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 2.009386 .0794462 25.29 0.000 1.853656 2.165117
x_1 1.504437 .0178087 84.48 0.000 1.469528 1.539345

t 3.007264 .0299852 100.29 0.000 2.948487 3.066041
_cons 1.914701 .0600506 31.88 0.000 1.79699 2.032412

sigma_u 4.7890736
sigma_e 2.9976669

rho .71849437 (fraction of variance due to u_i)

F test that all u_i=0: F(4999, 9997) = 9.53 Prob > F = 0.0000

The other interesting thing about Output 5.13 is the estimate of the constant term. It is

19Note that this issue does not arise with first differencing because that explicitly leads to the loss of one observation
per unit of observation.
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now highly significant (compared with the result in Output 5.12) despite the specification yielding
parameter estimates for the other regressors highly similar to those in Output 5.11 (which was
the best analogy to the manner in which a constant term was introduced to the first differenced
model and for which constant estimation was suppressed altogether) or, for that matter, to those
in Output 5.12 (for which constant estimation was not suppressed). This has several implications.
First, control for time (properly demeaned) might be useful practice in demeaned models. It
appears to do little harm (except perhaps in very small datasets for which the information in each
observation is dear and parsimony20 becomes an important consideration) and, to the extent that
there is a time trend to both the outcome and program participation, might avoid omitted variable
bias.

Second, the estimation of a classic constant term in the demeaned model is a less clear-cut
business than in the first differenced case. The purpose-built fixed effects estimation commands in
different commercial statistical packages can also take different approaches to constant estimation
and hence yield different results. To get some flavor for how particular the process can be, we
consider the estimation of the constant term under STATA’s xtreg command with the fe option.

To begin with, consider the foundational model

Yit = γ + β0 · t+ β1 · Pit + β2 · x1it + β4 · µi + εYit

This is essentially the departure point model for the chapter to this point minus the term related to
the fixed regressor x2 (which is not important for the present discussion). Demeaning the regressors
yields

Yit − Yi = γ · (1− 1) + β0 · (t− t) + β1 ·
(
Pit − Pi

)
+ β2 · (x1it − x1i) + β4 · (µi − µi) + εYit − ε1Y

or
Ẏit = β0 · ṫ+ β1 · Ṗit + β2 · ˙x1it + ˙εit

Y

However, from the foundational model the following is also true:

Y = γ + β0 · t+ β1 · P + β2 · x1 + β4 · µ+ εY

where
Y , t, P , x1, µ, ε

Y

are the means of these variables across the entire sample. Adding this specification to the demeaned
specification yields

Ẏit + Y = γ + β0 ·
(
ṫ+ t

)
+ β1 ·

(
Ṗit + P

)
+ β2 · ( ˙x1it + x1) + β4 · µ+ ˙εit

Y + εY

which is another way of saying

Ẏit + Y = γ + β0 ·
(
ṫ+ t

)
+ β1 ·

(
Ṗit + P

)
+ β2 · ( ˙x1it + x1) + β4 · µ+ Some Random Error

xtreg with the fe option estimates this model under the restriction that

µ = 0

The estimand for the constant term from the xtreg command with fe option is thus γ, the
constant term from the original model. This can be seen by estimating the original regression

20In statistics, parsimony is the quality of limiting the number of parameters to be estimated. Of course, as we
have seen in the last chapter that can actually generate biased estimates of program impact.
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model from this chapter without omitted variable bias by including µ as a regressor, results for
which are presented in Output 5.14.21

STATA Output 5.14 (5.1.do)

. * The correct specification of the original model

. reg Y P x_1 x_2 t mu

Source SS df MS Number of obs = 15000
F( 5, 14994) =11393.63

Model 519090.578 5 103818.116 Prob > F = 0.0000
Residual 136624.456 14994 9.11194188 R-squared = 0.7916

Adj R-squared = 0.7916
Total 655715.034 14999 43.7172501 Root MSE = 3.0186

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 1.981741 .0650937 30.44 0.000 1.85415 2.109333
x_1 1.496318 .0145315 102.97 0.000 1.467835 1.524802
x_2 1.991945 .0132706 150.10 0.000 1.965933 2.017957

t 3.007309 .0301917 99.61 0.000 2.94813 3.066488
mu .9712205 .0133681 72.65 0.000 .9450173 .9974237

_cons 1.997153 .0544501 36.68 0.000 1.890424 2.103882

We conclude by mentioning another popular linear fixed effects method commonly applied: the
dummy variable estimator. It is simple enough in conceptualization: it attempts to control for µi
from

Yit = γ + β0 · t+ β1 · Pit + β2 · x1it + β3 · x2i + β4 · µi + εYit

by estimating it for each of the i = 1, ..., N individuals in the sample. This is accomplished by
regressing Yit on Pit, t, x1it, and a dummy variable for each individual. The regression model
actually estimated is thus on the lines of

Yit = δ + β0 · t+ β1 · Pit + β2 · x1it +
N∑
j=2

φj · dj + εYit

where dj is a dummy that equals 1 if i = j (for instance, d550 = 1 if i = 550). The φs are parameters
to be estimated in the regression. They estimate the “fixed effect” of being each individual in
the sample. That fixed effect captures both observed but fixed (with respect to time) individual
characteristics and unobserved fixed characteristics. The former are not explicitly included in the
regression because the effect of variables like x2i, which do not vary over time for the individual,
on Yit cannot be separately identified from the effect of di on Yit. Put differently, φi cannot be
separately estimated from β3. Instead, x2 is effectively subsumed in the fixed effect. In other words,

φi = β3 · x2i + β4 · µi

A dummy variable is not offered for the first individual in the sample i = 1 because a fixed effect for
that individual could not be separately identified from a constant term. Rather, the constant term

21Just after deriving the approach behind xtreg, we discovered that STATA had helpfully laid it out in a discussion
at

http://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/

(retrieved December 4, 2013).
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δ captures that individual’s fixed effect, and the estimates of the fixed effect (i.e. the φs) for every
other individual in the sample can be interpreted as the difference between their own fixed effect
and the first individual’s fixed effect. This is the reason that the constant term is now labelled δ
and not γ: in the dummy variable model we are not estimating the original constant γ.

Estimation for the dummy variable model are provided in Output 5.15. For practicality, the
estimates of φ are provided for only the 2nd through 6th, and 4,996th to 5,000th individuals. The
most important thing to recognize is that the estimated coefficients for the key variables (including
program impact, the coefficient on P ) are identical to those obtained from either the manually
(i.e. by use) demeaned model or xtreg with the fe option. Interestingly, the standard errors
and t-statistics for those key variables are the same as those yielded by the xtreg command
(see Output 5.13). The reason for this is that the dummy variable model explicitly adds 4,999
parameters (in this example), thus insuring that standard errors are estimated based on the correct
understanding of the true number of independent observations (to see this, review the discussion of
degrees of freedom in the last chapter). The dummy variable estimator is thus equivalent in terms
of parameter estimates for the key covariates to the demeaned estimator and in terms of standard
error estimates to any implementation of the demeaned estimator that correctly recognizes the
number of independent observations (i.e. degrees of freedom) as with xtreg with the fe option.

STATA Output 5.15 (5.1.do)

. * The dummy variable fixed effects model

. reg Y P x_1 t i.ID

Source SS df MS Number of obs = 15000
F(5002, 9997) = 12.59

Model 565881.924 5002 113.131132 Prob > F = 0.0000
Residual 89833.1105 9997 8.98600685 R-squared = 0.8630

Adj R-squared = 0.7945
Total 655715.034 14999 43.7172501 Root MSE = 2.9977

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 2.009386 .0794462 25.29 0.000 1.853656 2.165117
x_1 1.504437 .0178087 84.48 0.000 1.469528 1.539345

t 3.007264 .0299852 100.29 0.000 2.948487 3.066041

ID
2 -4.807608 2.447981 -1.96 0.050 -9.606144 -.0090715
3 -1.476874 2.448031 -0.60 0.546 -6.275507 3.32176
4 -.9128602 2.447719 -0.37 0.709 -5.710882 3.885162
5 -2.823543 2.447782 -1.15 0.249 -7.621688 1.974602
6 3.224894 2.447763 1.32 0.188 -1.573214 8.023002

... ... ... ... ... ... ...
4996 -5.342831 2.447689 -2.18 0.029 -10.14079 -.5448671
4997 -8.186501 2.448126 -3.34 0.001 -12.98532 -3.387681
4998 -3.084011 2.44818 -1.26 0.208 -7.882936 1.714914
4999 -2.466617 2.447702 -1.01 0.314 -7.264606 2.331372
5000 .3235599 2.447739 0.13 0.895 -4.474502 5.121622

_cons 4.716826 1.731343 2.72 0.006 1.323045 8.110608

In terms of popularity, the demeaned fixed effects model is probably most commonly employed,
followed by the dummy variable fixed effects model and, more distantly, the first difference model.
The first difference and fixed effects models differ primarily in the precision with which they estimate
the parameters of the key covariates, including program impact. This is manifested by smaller
standard errors on the estimated parameters for these key covariates. Specifically, when the εY s
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are correlated over time (i.e. corr(εYit , ε
Y
it+1) 6= 0) the first difference estimator is generally more

efficient. Although the fixed effects models are generally more popular the basis for that relative
popularity is unclear. As this discussion has made clear, however, with proper specification their
differences in terms of the point estimates for program impact are not particularly important
compared with the difference between any of them and the program impact estimate yielded by
simple regression of Yit on Pit, t, x1it and x2i.

5.1.3 Measurement Error

We now briefly discuss one potential pitfall of within estimators: they tend to worsen bias from
mismeasurement of regressors. This statement has two implications: first, that mismeasurement
of regressors introduces bias to estimates generated by regression and, second, that this bias is
often worse in within regression models. The first logical step in a discussion of this is to explain
measurement error bias in regressions per se. For the purpose of doing so, as well as examining the
implications of measurement error in the context of within models, we begin with the simple model

yi = β0 + β1 · xi + εi

This is the true data generating process behind the outcome y. We assume the independence of x
and ε.

This is essentially a model involving cross-sectional variation in the outcome and regressor. In
other words, it shows how levels of y depend on levels of x. Ordinary least squares regression of y
on x would identify estimates β̂0 and β̂1 of β0 and β1, respectively, by considering how variation in
levels of y across individuals appeared to be linearly associated with variation in levels of x across
the same individuals. Since x is independent of ε, those estimates would also be unbiased (i.e.
E(β̂0) = β0 and E(β̂1) = β1).

Suppose, however, that we actually observe not x but a mismeasured version of x that we will
call x̃. Specifically, suppose we observe {yi, x̃i } for a sample of i = 1, ..., N individuals where

x̃i = xi + υi

Thus, we observe not xi, but xi mis-measured by a random margin represented by υi. For simplicity,
assume that the error υi is uncorrelated with xi.

Let us now consider what we estimate when we observe the mismeasured regressor x̃ instead of
the correctly measured regressor x. Substituting in, we have

yi = β0 + β1 · xi + εi

= β0 + β1 · (x̃i − υi) + εi

= β0 + β1 · x̃i − β1 · υi + εi

= β0 + β1 · x̃i − ξi
where

ξi = −β1 · υi + εi

is the regression error when the mismeasured regressor x̃i is considered. Given the discussion of
omitted variable bias in the last chapter, regression of yi on x̃i will yield a biased estimate of β1
because

corr (x̃i, ξi) 6= 0
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In other words, when we regress yi on x̃i

E
(
β̂1
)
6= β1

because x̃i is correlated with the error term via the omitted variable υi (x̃i is clearly correlated
with υi via the relationship x̃i = xi + υi).

Recall that the ordinary least squares estimate of β1, β̂1, is given by

β̂1 =

∑N
i=1

(
x̃i − x̃

)
(yi − y)∑N

i=1

(
x̃i − x̃

)2
The probability limit of this can be viewed as

plim
(
β̂1
)

=
cov (y, x̃)

var (x̃)

where cov(·) and var(·) indicate covariance and variance, respectively. This can be expanded:

plim
(
β̂1
)

=
cov (y, x̃)

var (x̃)
=
cov (β0 + β1 · x̃i − β1 · υi + εi, x̃)

var (x̃)

=
β1 · var (x̃)− β1 · cov (x̃, υ)

var (x̃)

= β1

(
1− cov (x̃, υ)

var (x̃)

)
= β1

(
1− σ2υ

var (x̃)

)
However,

var (x̃) =
(
σ2x + σ2υ

)
Therefore,

plim
(
β̂1
)

= β1

(
1− σ2υ

var (x̃)

)
= β1 ·

(
σ2x

σ2x + σ2υ

)

β̂1 from the regression of y on x̃ is thus biased (we established this earlier simply by noting the
correlation between x̃ and ξ) and inconsistent.

There are a number of interesting insights to be gleaned from the probability limit of β̂1,

plim
(
β̂1
)

= β1 ·
(

σ2x
σ2x + σ2υ

)

First, the inconsistency takes the form of a tendency to underestimate the true magnitude of β1.
Put more simply, the direction of the inconsistency of the estimate β̂1 of β1 is toward 0. For this
reason, measurement error bias is often referred to as attenuation bias. In a multiple regression
mismeasured regressors still imply biased and inconsistent parameter estimates, but the situation
gets a little more complicated in the sense that it becomes hard to generalize about the direction
of the bias. Nonetheless, a tendency toward attenuation typically arises. Second, the degree of
inconsistency depends on the proportion of the variation in the mismeasured variable x̃ driven by
variation in the true value x. Put differently, the larger is the relative contribution of measurement
error υ to the variation in the observed variable x̃ the worse will be the attenuation bias.

Measurement error bias can be worse, sometimes far worse, in the context of a within model
than in the corresponding cross sectional regression model. To see this, let us now consider a
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circumstance of balanced panels of N individuals for two time periods. Suppose that we observe
{Yit, x̃it} for a sample of i = 1, ..., N observed at time periods t = 1, 2. We assume that the true
values for the x (xi1 and xi2 for each individual i) are correlated over time (with correlation given
by ρ) but that the measurement errors (υ) are uncorrelated over time and uncorrelated with the
true values for x.

Starting from the cross sectional data

yit = β0 + β1 · xit + εit

we have the corresponding first differenced regression model

∆Yi = β1 ·∆xi + ∆εi

where
∆Yi = Yi2 − Yi1

and
∆xi = xi2 − xi1

Since we observe x̃it = xit+υit rather than xit, the regression function in terms of what we observe
is

∆Yi = β1 ·∆x̃i − β1 ·∆υi + ∆εi

= β1 ·∆x̃i + ∆ξi

Clearly the estimate of β1, β̂1, will be biased since ∆x̃i is correlated with ∆ξi because ∆x̃i depends
in part on ∆υi.

The probability limit of the estimate of β1, β̂1, from the first difference regression of ∆y on ∆x
is

plim
(
β̂1
)

=
cov (∆y,∆x̃)

var (∆x̃)

=
cov (β1 ·∆x̃i − β1 ·∆υi + ∆εi,∆x̃)

var (∆x̃)

= β1 − β1 ·
cov (∆υi,∆x̃)

var (∆x̃)

= β1 ·
(

1− 2 · σ2υ
2 · (1− ρ) · σ2x + 2 · σ2υ

)

= β1 ·
(

(1− ρ) · σ2x
(1− ρ) · σ2x + σ2υ

)
where ρ = corr(xi1, xi2).

22

22The math of some of the final stages might not be immediately obvious. Most obviously

var (∆x̃) = var (x̃2 − x̃1) = var (x2 + υ2 − x1 − υ1)

where we suppress the i subscript for notational simplicity. Now, we assume that the measurement error terms υ are
uncorrelated over time, but the true values x might be correlated over time. Then we have

var (∆x̃) = var (x2 + υ2 − x1 − υ1) = var (x2 − x1) + var (υ2) + var (υ1)

= var (x2 − x1) + 2 · var (υ) = var (x2 − x1) + 2 · σ2
υ
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The probability limit of the first difference estimator

plim
(
β̂1
)

= β1 ·
(

(1− ρ) · σ2x
(1− ρ) · σ2x + σ2υ

)

is in form very similar to the probability limit for the corresponding cross sectional model:

plim
(
β̂1
)

= β1 ·
(

σ2x
σ2x + σ2υ

)

Hence, many of the conclusions formed in the cross sectional setting carry over to within models.
In particular, the greater is the variance of the measurement error υ compared with that of the
true regressor x, the greater is the measurement error bias.

The most obvious difference in structure with the cross sectional case is the presence of the
term (1−ρ). By the addition, we see the most important truth about measurement error in within
models: in within models it is generally worse than in a corresponding cross sectional model to the
extent that the true time-varying regressors are correlated. The reason is rather simple: if x is highly
correlated over time, it exhibits less true within variation than if it had been less highly correlated.
Measurement error thus makes a proportionally larger contribution to the within variation than it
did to the cross sectional variation.

There is a kind of intuitive quality to this result. To see this, let us focus on a simple example
where we wish to estimate the impact of income on health care demand. Thus, we observe some
channel of health care demand, HD, and income Y . Assume that there are no unobserved factors
that influence HD and are associated with Y (a whopping assumption, but let’s run with it for
present purposes). To assess the impact of income on health care demand, we might regress HD on
Y . Of course, for any number reasons Y is likely to be mismeasured, preventing us from observing
the true income for individuals in our sample. If nothing else, individuals might not know their

= var (x2) + var (x1)− 2 · cov (x1i, x2i) + 2 · σ2
υ

where the third and last steps rely on the fact that, for any two variables Z and W and constants a and b

var (a · Z + b ·W ) = a2 · var (Z) + b2 · var (W ) + 2 · a · bCov (Z,W )

Continuing, we have
var (∆x̃) = var (x2) + var (x1)− 2 · cov (x1, x2) + 2 · σ2

υ

= σ2
x + σ2

x − 2 · var (x) · cov (x1, x2)

var (x)
+ 2 · σ2

υ

= σ2
x + σ2

x − 2 · var (x) · cov (x1, x2)√
(var (x))2

+ 2 · σ2
υ

We assume that the variance of x does not evolve over time. Therefore var(x) = var(x1) = var(x2) and

var (∆x̃) = σ2
x + σ2

x − 2 · var (x) · cov (x1, x2)√
var (x1) · var (x1)

+ 2 · σ2
υ

However,
cov (x1, x2)√

var (x1) · var (x1)

is the correlation of x1 and x2, which we represent by ρ. Therefore

var (∆x̃) = σ2
x + σ2

x − 2 · σ2
x · ρ+ 2 · σ2

υ = 2 · (1− ρ) · σ2
x + 2 · σ2

υ
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precise income,23 they might deliberately provide a distorted report of their income, etc. Thus
there is likely to be some measurement error bias to the regression estimate of the impact of Y on
HD.

Clearly, income might vary from time period to time period as the economy is buffeted by
shocks, different individuals meet different fates in terms of their investments, etc. However, it
seems reasonable to suspect that income Y is highly correlated over time: those with high income
tend to have persistently higher than average income, while many of the poor seem essentially
stuck in a low income trap. Indeed, it seems likely to suspect that, in many instances, the variation
in income across individuals (i.e. the cross-sectional variation in income) dwarfs the variation in
income within individuals over time. This means, however, that measurement error is likely to be
a much larger portion of within than cross sectional variation in income, suggesting that within
regression estimators of the impact of income Y on health care demand HD likely suffer from far
worse measurement error bias.

An open question is how big a problem measurement error bias might be in the context of pro-
gram impact evaluation. The straightforward and simple single regressor measurement error bias
story would require somehow imperfectly observing program participation status. It is possible
that participation could be mismeasured, though the authors must admit that it seems somewhat
implausible in the context of some of the programs that they have evaluated. That said, in most
instances there was no ready way for us to test for mismeasurement of participation (for instance,
by spot checking program enrollment rolls against individual survey respondent’s reports of their
participation status). Of course, the likelihood of mismeasurement may depend on the conceptual-
ization of participation. Nonetheless, measurement error of other regressors that serve as controls in
a program impact evaluation regression is always a possibility. This could introduce a bad control
problem.

Finally, we note that there is at least one circumstance where within estimators may actually
yield unbiased estimates in the face of measurement error when the corresponding cross-sectional
estimator would not: when the measurement error υ is correlated over time, a possibility we have
thus far ruled out by assumption. To see this, consider the extreme case where υ is perfectly
correlated over time (i.e. corr(υit, υit+1) = 1). In that case υit = υit+1 = υi. However, this means
that the confounding unobservable when we observe x̃ instead of x is fixed over time: exactly
the circumstance within models are designed to address. Within estimators thus actually purge
measurement error bias when the bias is perfectly correlated over time.24

When the correlation in the measurement error over time is imperfect (i.e. less than 1) but not
0 the situation gets a bit murkier. Within estimators will likely reduce variation in measurement
error to the extent that they purge out the correlated portion. To see this, imagine that the
measurement error has an error components structure:

υit = υ1i + υ2it

In other words, the measurement error has a persistent component υ1 and a time-varying component
υ2. Clearly, the larger is the relative contribution of υ1 to the overall variation in υ, the greater the
reduction in overall variation in measurement error achieved with a within model. Whether that
can outweigh the loss in variation in the true values of the regressors when those true values are
correlated is unclear in any given application.

23Indeed, as this manual was written, North Carolina tax law changed, requiring all residents, including the
authors, to submit new paperwork for determining deductions. The author of this chapter was, despite actually
being an economist, embarrassingly unsure of his precise income.

24Of course, to be sure of enjoying this unequivocal benefit one would need to assume that the measurement error
is indeed perfectly correlated over time, a very strong assumption in many applications.
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5.1.4 Nonlinear Models

The discussion of within estimators has until now focused on linear regression specifications, such
as

Yit = γ + β0 · t+ β1 · Pit + β2 · x1itβ3 · x2i + β4 · µi + εYit

This model is linear in the sense that the outcome Yit is continuous and all of the observed and
unobserved regressors (t, Pit, x1it, x2i and µi) have a linear effect on the dependent variable Yit.
Linearity has made it relatively straightforward to convincingly remove any confounding influence
from fixed unobservables such as µi by first differencing, demeaning, etc.

We now briefly consider nonlinear regression models. Things become a bit trickier when we
shift the discussion to these non-linear models. First, we clarify what we mean by a non-linear
model. To begin with, we might consider a general regression model along the general lines of

Yit = f
(
β0 + β1 · Pit + β2 · xit + µi + εYit

)
where f(·) is some nonlinear function. For instance, we might have

f (a) = exp (a)

where exp(a) indicates the exponential function

f (a) = exp (a) = ea ≈ 2.718281828a

This gives rise to the regression model

Yit = exp
(
β0 + β1 · Pit + β2 · xit + µi + εYit

)
This is essentially along the lines of a classic non-linear regression model for a continuous outcome
Y (although the dependent variable Y might be in some sense limited due to the limited range of
the functional form governing the regressors25).

The problem with a non-linear regression model such as this should be immediately apparent.
Consider the earlier de-meaning exercise. We would now be left with

Yit − Yi = exp
(
β0 + β1 · Pit + β2 · xit + µi + εYit

)
−exp

(
β0 · 1 + β1 · Pi + β2 · xi + µi + εYi

)
Clearly, the confounding unobservable µi is not going to drop out of this specification. A similar
result obtains with first differencing. Hence the first difference estimator and the de-meaning fixed
effects estimator do not purge the confounding unobservable µ. In some instances the dummy
variable estimator might represent a viable solution for controlling for the fixed unobservable,
though as we will see this approach often introduces a new peril in the nonlinear context.

Probably more often in health and related fields where human welfare is studied at the micro
level (e.g. at the individual level) non-linear regression models arise in the explicitly26 limited
dependent variable context. Suppose that Y is a binary outcome (e.g. whether the individual uses

25In our example we have the general functional form y = ea, which places no real restriction on the domain (i.e.
the values a can take on) but does imply restrictions on the range (i.e. the values y can take on), namely that y
cannot take on negative values.

26As opposed to inadvertently due to the range of the nonlinear functional form employed.
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or does not use contraception, visits or does not visit a particular health care provider, etc.) and
we are interested in the effect of the regressors on the probability that Y equals 1:

Pr (Yit = 1|Pit, xit, µi) = f (Pit, xit, µi)

where primary interest in the program impact context is with the participation regressor Pit and
some determinants of Yit (namely µi in the present context) may not even be observed. Starting
with the latent variable model

Y ∗it = β0 + β1 · Pit + β2 · xit + µi + εYit

if we assume that εYit is the difference of two Type-I Extreme Value variables we have the logit
choice probability:27

Pr (Yit = 1|Pit, xit, µi) =
exp (β0 + β1 · Pit + β2 · xit + µi)

1 + exp (β0 + β1 · Pit + β2 · xit + µi)

Clearly, as with the basic non-linear regression above, de-meaning or differencing would not purge
µi. Indeed, it is not even obvious how to meaningfully demean or first-difference Yit.

This problem extends to other limited dependent variable models as well. Suppose, for instance,
that Y is a count outcome, such as number of children born, number of visits to a health care
provider, number of arrests, etc. There are many different regression models for count outcomes
(see Cameron and Trivedi (1998) for a comprehensive review of count outcome regression models).
The classic count data model is Poisson regression, whereby

P (Yit = n|Pit, xit, µi) =
exp {− (β0 + β1 · Pit + β2 · xit + µi)} · (β0 + β1 · Pit + β2 · xit + µi)

n

n!

for n = 0, 1, 2, .... Thus we have a very different kind of outcome, and a very different kind of
distributional assumption, but it should already be evident that we have the same basic problem:
first differencing and demeaning will not purge the fixed unobservable µi.

As a gross generalization, most limited dependent variable models lack a consistent within
estimator developed for that model. For instance, we are unaware of any consistent within estimator
for the probit model. One oft-cited exception is a fixed effects estimator for the logit usually called
the Chamberlain model or Chamberlain logit model (see, for instance, Maddala (1982) for
discussion of the Chamberlain model).

Fixed effects models purpose-built for non-linear regression frameworks often take a somewhat
novel approach to the control for the fixed confounding unobservables. The Chamberlain logit
model is a good example. Suppose that we have a sample of N individuals across T time periods,
and observe an outcome variable Y and program participation indicator P (i.e. {Yit, Pit}) for each
of the i = 1, ..., N individuals for each of the t = 1, ..., T time periods.28 Individual i’s contribution
to the likelihood at time period t is

L (Yit|µi) =

(
exp (β0 + β1 · Pit + µi)

1 + exp (β0 + β1 · Pit + µi)

)Yit

·
(

1

1 + exp (β0 + β1 · Pit + µi)

)1−Yit

27Had we assumed that εYit is normal we would have had the probit model.
28This is, among other things, tantamount to assuming balanced panels, which we do without loss of generality.
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Individual i’s contribution to the likelihood function across all T time periods would then just be
the product of their contribution from each individual time period:

L (Yi1, Yi2, ..., YiT |µi) =
T∏
t=1

{(
exp (β0 + β1 · Pit + µi)

1 + exp (β0 + β1 · Pit + µi)

)Yit

·
(

1

1 + exp (β0 + β1 · Pit + µi)

)1−Yit
}

=
exp

(∑T
t=1 Yit · (β0 + β1 · Pit + µi)

)
∏T
t=1 (1 + exp (β0 + β1 · Pit + µi))

=
exp

(
µi
∑T
t=1 Yit

)
· exp

(∑T
t=1 Yit · (β0 + β1 · Pit)

)
∏T
t=1 (1 + exp (β0 + β1 · Pit + µi))

This clearly depends on µi, which we must somehow purge.
The Chamberlain model involves the insight that

T∑
t=1

Yit

is a sufficient statistic for µi. Basically, a statistic z is sufficient for a parameter Θ if the
probability of an outcome conditional on z does not depend on Θ. So saying that

T∑
t=1

Yit

is a sufficient statistic for µi is tantamount to saying that once we condition on

T∑
t=1

Yit

the probability of {Yi1, Yi2, ..., YiT } no longer depends on µi. The proof of this is a bit tedious (the
reader can skip this if desired; we discuss it mainly to make clear just how complex the motivation
for such models can be), but runs as follows. To begin with, assume that

T∑
t=1

Yit = q

In other words, for this individual the binary outcome Y takes on the value 1 q times between t = 1
and t = T .

L

(
Yi1, Yi2, ..., YiT |

T∑
t=1

Yit = q

)
=
Pr
(
Yi1, Yi2, ..., YiT ,

∑T
t=1 Yit = q

)
Pr
(∑T

t=1 Yit = q
)

This simply reflects Baye’s Rule.29 The next step reflects the fact that knowing that

T∑
t=1

Yit = q

29There are several versions of Baye’s Rule. We invoke

Pr (A|B) =
Pr (A,B)

Pr (B)
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tells us nothing about the value of any particular Yit. We have

L

(
Yi1, Yi2, ..., YiT |

T∑
t=1

Yit = q

)
=
Pr
(
Yi1, Yi2, ..., YiT ,

∑T
t=1 Yit = q

)
Pr
(∑T

t=1 Yit = q
) =

Pr (Yi1, Yi2, ..., YiT )

Pr
(∑T

t=1 Yit = q
)

By the math in the last paragraph, the next step involves recognizing that the numerator is equal
to

exp
(
µi
∑T
t=1 Yit

)
· exp

(∑T
t=1 Yit · (β0 + β1 · Pit)

)
∏T
t=1 (1 + exp (β0 + β1 · Pit + µi))

Notice that from this
exp

(
µi
∑T
t=1 Yit

)
∏T
t=1 (1 + exp (β0 + β1 · Pit + µi))

does not depend on the particular sequence {Yi1, Yi2, ..., YiT } generating the result that

T∑
t=1

Yit = q

The denominator involves the sum of the probabilities for all of the ways (i.e. possible sequences
{Yi1, Yi2, ..., YiT } by which

T∑
t=1

Yit = q

Of course, the term

exp
(
µi
∑T
t=1 Yit

)
∏T
t=1 (1 + exp (β0 + β1 · Pit + µi))

can be factored out from the probability of each possible sequence under which the Yit is equal to
1 q times. This leaves the conditional likelihood

L

(
Yi1, Yi2, ..., YiT |

T∑
t=1

Yit = q

)
=

exp
(∑T

t=1 Yit · (β0 + β1 · Pit)
)

∑D
d=1

{
exp

(∑T
t=1 Y

d
it · (β0 + β1 · Pit)

)}
where D is the number of possible sequences such that

T∑
t=1

Yit = q

For instance, if there are two time periods and Y equals 1 for individual i just once, the possible
sequences of values for {Yi1, Yi2} are {0, 1} and {1,0}.30

30Notice that an individual does not make a meaningful contribution to the likelihood if either

T∑
t=1

Yit = T

(in which case they always choose Y = 1) or
T∑
t=1

Yit = 0

(in which case they always choose Y = 0). In other words, individuals make a contribution to the likelihood only if
0 < q < T , or if they sometimes chose Y = 1 and sometimes chose Y = 0. In some samples, it is possible that a large
proportion of the individuals within them always chose Y = 1 or Y = 0 over time, implying a possibly large loss of
observations when estimating the Chamberlain model.
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This discussion of the Chamberlain model has been quite an intense little mathematical detour,
one which the reader can be forgiven for finding a bit overwhelming or tedious (indeed, on editing
the authors found that they had made a huge number of mistakes in composing such detailed
mathematical derivations!). That said, it may not be that important that the reader follows it fully.
There are probably two important things to retain from this experience. First, it should be clear
enough that derivation of consistent fixed effects estimators for limited dependent variable models is
often quite complex compared with the (fairly straightforward) linear “within” approaches. Second,
per the particulars of the Chamberlain model, it can involve an enormous loss of observations over
time since it identifies treatment effects only with those individuals who did not consistently make
the same outcome choice over time.

Despite the fact that the Chamberlain model is well-known, it does not appear (in our ad-
mittedly limited experience) to be employed often in the program impact evaluation context.31

Generally speaking, two approaches appear to be popular for addressing fixed unobservables when
estimating limited dependent variable models with panel data (or any circumstance where there is
“within” variation in the outcome and key regressors).

First, the dummy variable fixed effects estimator is often employed. However, when contem-
plating a fixed effects estimation strategy along these lines, one must always be mindful of the
incidental parameters problem. This complication has been the focus of a rather large (ex-
tending back at least to Neyman and Scott (1948)) and ongoing (see, for instance, Greene (2004)
for a recent example) literature that has examined many facets of the problem, the details of which
are far beyond the scope of this manuscript. The basic idea of the incidental parameters problem is
that in nonlinear models small sample inconsistency of estimates of the dummy variables designed
to control for unobserved heterogeneity (whether at the individual level, community level, etc.)
generally contaminates estimates of the parameters that are the object of interest (β1 in the above
example).

Whether, in light of the incidental parameters problem, the dummy variable manifestation of
the fixed effects model can be applied in any particular application with a nonlinear model is often a
judgment call. The basic incidental parameters problem involves the contamination of estimates of
parameters of interest by the small sample inconsistency of the dummy variables designed to control
for the unobserved heterogeneity. What this means in practice is that the fewer the observations
at the level of the hypothesized confounding unobservables (e.g. the fewer the observations for
each individual when the focus is controlling for an individual-level fixed confounding unobservable
along the lines of µi) the more likely that the estimate of the dummy variable control for that
unobserved heterogeneity will be inconsistent, yielding inconsistent estimates.

A good example of the dummy variable approach with limited dependent variable models is
Angeles et al. (1998). Angeles et al. (1998) sought to estimate the impact of a family planning
program on fertility. They had panel data on fertility involving samples of women from various
villages over many years. The program was implemented at the village level over time. There
was thus within variation in the outcome (because women had children in some but not all of the
time periods in which they were observed) and program participation (because the program was
gradually introduced across villages over time, so that in a given village the program might have
been operating in some but not all of the time periods). Since the key outcome, giving birth in a
given year, is binary, Angeles et al. modeled it with a logit regression.

Their concern was with potential endogeneity of program placement owing to community-level
unobservables that might influence both the reproductive choices of women and program placement.

31Implementing it in STATA is trivial via the xtlogit command with fe option. Most commercial statistical
packages of which we are aware offer an estimation command or routine for the Chamberlain model in one fashion
or another.
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For instance, some villages might have cultures more receptive to fertility regulation, a prospect
that might make them lobby for the program and render the women within such villages less likely
to give birth. In a simple regression of fertility (i.e. whether a woman gave birth in any given year)
on program participation (i.e. whether the family planning program was present in the village
in that given year), the presence of such unobserved village level factors would likely lead to an
exaggerated estimate of program impact. Of course, this prior regarding the direction of bias is
based on just one scenario. Perhaps villages resistant to fertility control would be prioritized, likely
leading to underestimation of true program impact.

Under the assumption that these confounding village-level unobservables were fixed over time,
Angeles et. al (1998) used dummy variables for village to control for community level permanent
heterogeneity in their logit regression of fertility on program participation. This may have been
reasonable because, cumulatively, they had many woman-year observations for each village. This
somewhat alleviates concerns about the incidental parameters problem. Unfortunately, how many
observations are sufficient for the unit of observation to overcome the incidental parameters problem
is generally not clear.

The other possible approach is to try to use a linear model. For instance, with a binary outcome
one could employ the linear probability model. This has the advantage of being amenable to
standard linear within models and not suffering from unfortunate properties such as the incidental
parameters problem. Some may object to this by arguing that such linear models offer inferior fit
to the data. However, this consideration must be balanced against some recognition of the overall
goal, to model average program impact, for which such linear models are likely often perfectly
adequate.

5.1.5 Hausman-Type Tests

We now briefly discuss a class of endogeneity tests that are typically referred to as “Hausman
tests”, though a variety of names are attached to them (Hausman, Hausman-Wu, Hausman-Taylor,
etc.) and have in one fashion or another been developed in numerous manuscripts (Hausman
(1978), Wu (1973), Durbin (1954), etc.). Hausman-type tests test for the endogeneity of regressors
in a regression model. More specifically, they test for correlation between regressors and the true
regression error. Typically, Hausman tests actually test for the possibility that some (not necessarily
all) of the regressors are correlated with the regression error.

The basic idea of all Hausman tests is quite simple. The test involves comparing “consistent”
regression estimates with “efficient” ones. Large differences in the estimates are then taken as
evidence of correlation between at least some of the regressors and the error term.

In this context, a “consistent” estimate is one that recognizes and corrects for potential correla-
tion between regressors and the true regression error. The within estimators we have just studied
are the canonical example: they recognize that regressors may be correlated with the true “cross-
sectional” regression error term due to the presence of fixed confounding unobservables in the error
term, and proceed to purge them. Consider, for instance, the following regression model

Yit = β0 + β1 · Pit + β2 · xit + µi + εYit

Within estimators recognize the possible correlation between either Pit or xit and the fixed (over
time for individual i) unobservable µi and deal with it by means we have discussed (first differencing,
demeaning, introduction of dummy variables for individual i).

We have seen that these strategies come at a very heavy cost in terms of truly independent
observations available for estimation (i.e. degrees of freedom). In other words, they entail a loss
of information that manifests itself, other things being equal, in terms of higher standard errors to
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estimates of parameters (such as the estimate β̂1 of program impact β1) compared with, for instance,
plain old ordinary least squares estimation of Yit on Pit and xit. To obtain unbiased estimates of
program impact β1 and other parameters (β2 being the only other regression parameter in our
simple model) ordinary least squares regression of Yit on Pit and xit requires that the observed
regressors Pit and xit be independent (or at least mean independent) of any fixed unobservables
such as µi. However, even if this assumption is correct (i.e. that Pit and xit are independent or
at least mean independent of any fixed unobservables such as µi) standard ordinary least squares
estimation would yield incorrect standard error estimates. The reason is that the basic formulas
used to estimate standard errors for ordinary least squares regression estimates such as β̂0, β̂1 and
β̂2 assume that the error terms are all completely independent. However, in the presence of a
persistent unobservable (even one unrelated to Pit and xit) this is clearly not the case: the errors
for a given individual i will be correlated across time owing to the persistent presence of µi in their
error term.

There are several solutions to this problem that yield “more correct” (i.e. likely closer to the
truth) standard error estimates than the basic ordinary least squares formulas that assume complete
independence of errors. One in particular, random effects estimation, is often used to produce the
“efficient” estimates against which Hausman tests compare the “consistent estimates”. Random
effects are the topic of a fairly vast literature, with many different facets, proposed estimators, etc.,
but the core idea is rather simple: to model the error term as correlated for each individual over
time. Typically this involves some sort of explicit distributional assumption about the error term
(normality being an extremely popular choice). For instance, one might assume that the εs are
independently (across individuals and within each individual over time) normally distributed while
each individual receives a draw for µ that is independent across individuals but constant over time

Figure 5.1: More and Less Likely χ2 Values
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for a given individual. Estimation then often proceeds by maximum likelihood.
To summarize, the consistent estimator delivers consistent estimates but typically at a high cost

in terms of loss of information and thus higher standard errors. The efficient estimator delivers
estimates with lower standard errors, but under the assumption that the regressors are unrelated to
the error term (in other words, the estimates of parameters such as β1 or β2 could be inconsistent
if this assumption is wrong). Hausman tests conclude that the regressors are probably independent
of the errors if, after correcting for the differences in standard errors of the two approaches, the two
sets of estimates (“consistent” and “efficient”) appear similar. If, however, they are very different,
this is taken as evidence that some regressors are indeed correlated with the error term.

Hausman tests typically involve the simultaneous testing of all regressors, and the result of the
test can be interpreted as indicating whether at least some of the tested regressors are correlated
with the error term (i.e. endogenous). Because they involve testing all of the regressors, Hausman
test statistics are usually expressed in terms of linear algebra, which is ideally suited for the vectors
of parameter estimates and matrices of estimates for the variances and covariances of the estimates
involved in the test statistic. However, to give some flavor for the statistic, we roughly cast it in
terms of one parameter, β1. We emphasize that this is not a true Hausman statistic, but instead
designed to provide the reader with a very rough sense of the structure of the Hausman statistic in
terms of just one regressor.

Specifically, define β̂C1 as the consistent estimate of β1 generated by the within estimator (typ-
ically, the default in most ready-made Hausman tests offered by commercial statistical packages
such as STATA is the demeaned fixed effects estimator). Let β̂E1 be the efficient estimate of β1
from the random effects model. The Hausman statistic would be roughly of the form(

β̂C1 − β̂E1
)2

ˆvar
(
β̂C1

)
− ˆvar

(
β̂E1

)
where the ˆvar(β̂C1 ) is the estimated variance of the within estimate of β1 and ˆvar(β̂E1 ) is the same
for the random effects estimate of β1. Notice that, other things being equal, the larger the difference
in the estimate of β1 generated by the within and random effects models, the larger is the value
of this test statistic. The null hypothesis in a Hausman-type test is typically the exogeneity of the
regressors, and the larger is the value of the test statistic, the more likely we will reject the null
and conclude that there is evidence for correlation between at least some of the regressors and the
regression error term.

We re-emphasize that this is not a real Hausman statistic. A real Hausman statistic simulta-
neously tests all of the parameter estimates for the regressors, taking into account the variances
and covariances of all of the estimates. Nonetheless, this rough example hopefully provides some
intuitive sense of the structure of the Hausman statistic. Formally, the Hausman statistic is

H =

(
~̂
βC − ~̂

βE
)T (

ˆvarC − ˆvarE
)−1 ( ~̂

βC − ~̂
βE
)

where
~̂
βC

~̂
βE

are, respectively, vectors of the coefficient estimates from a consistent (such as a within estimator)
and an efficient (such as random effects) estimator. If there are K regressors common to the two
models, then these vectors are (1XK) in dimension. ˆvarC and ˆvarE are the (KXK) matrices
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containing the variance and covariance estimates for estimates of the βs from the two models. The
term

(·)−1

refers to the inverse (in the linear algebra sense) of whatever matrix lies within the parentheses.32

Hausman (1978) shows that this statistic has a χ2 statistic under the null hypothesis that the
regressors are uncorrelated with the error term.

We reject the null hypothesis of exogenous regressors if the statistic is very large. To get some
idea of the logic of this, Figure 5.1 provides an illustration of a χ2 distributed random variable.
As the Figure makes clear, this is a distribution for which only non-negative values have positive
probability. Further, smaller values (i.e. those closer to the origin) are more likely than larger
values under the χ2 distribution. For instance, as the Figure illustrates, a test statistic value of 2
has a far higher probability under the χ2 than a value such as 8. Figure 5.2 illustrates the p-value
associated with the statistic value of 8 (as indicated by the shaded area under the curve). Once
again, the p-value is the probability of a Type-I error (rejecting a true null hypothesis).

The logic of the Hausman test decision is rather simple. If the null hypothesis is correct, then
the test statistic H follows a χ2 distribution. We reject the null hypothesis if the test statistic
H is sufficiently large that it is unlikely to have occurred under the assumed χ2 distribution (as
evidenced, for instance, by a small p-value).

In Outputs 5.16 through 5.18 we illustrate a Hausman test using the three time period extension
of the simulated empirical example we have considered thus far in this chapter. We do so using
STATA’s Hausman test command. The steps in performing the test (both in general and in STATA)
are fairly simple. First, estimate the consistent and efficient models. Doing so yields the statistics

~̂
βC

~̂
βE

ˆvarC

and
ˆvarE

that are the building blocks of the Hausman test statistic. The final step is, of course, the actual
computation of the statistic itself from these components.

Output 5.16 shows the results for the consistent model. This is the fixed effects model as
implemented by STATA’s xtreg command with the fe option. The key step following estimation
is to save the estimation results. This is done in the line

32The inverse in a Hausman test can be a bit complicated, and the crude but illustrative single parameter estimate
test statistic example we provided above makes clear a potential problem. That statistic was(

β̂W1 − β̂R1
)2

ˆvar
(
β̂W1
)
− ˆvar

(
β̂R1
)

The assumption is that
ˆvar
(
β̂W1
)
> ˆvar

(
β̂R1
)

However, there is no absolute guarantee that this will be the case in a particular estimation sample, resulting in
a possibly undefined or negative test statistic because the denominator is zero or negative (both of which are not
supported by the χ2 distribution), with particular concern over the negative possibility. In matric algebra terms,
there is the possibility that

ˆvarC − ˆvarE

is not positive definite. In that case an alternative approach such as the Moore-Penrose pseudoinverse is usually
pursued.
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estimates store f1

This stores in memory the results of the last estimation (in this case the xtreg , fe regression)
under the name f1 (which was chosen arbitrarily: it could have been called virtually anything).
Output 5.17 does the same for the efficient estimator, in this case STATA’s implementation of
random effects. This is estimated with the xtreg command with the re option. In this case, the
results are stored under the name r1. Finally, Output 5.18 provides results for the Hausman test.
The large test statistic value (of 971.61) and corresponding p-value of essentially 0 strongly suggests
rejection of the null hypothesis. We can conclude that the evidence (as manifested in the Hausman
test statistic) strongly suggests that at least some of the regressors are indeed endogenous. This
is a result that should come as no surprise, since our empirical example was engineered to deliver
endogeneity (based on a relationship between program participation P and a fixed unobserved
characteristic µ relegated to the regression error term).

We conclude with a caveat about Hausman-type tests that is in some sense logically self-evident.
The test assesses the evidence for endogeneity by comparing estimates from a consistent estimator
and an efficient one, correcting for differences in the variance of the estimates produced by the
two. The logic behind the test is essentially that if any regressors are endogenous this will be
revealed by the consistent estimates deviating substantially (i.e. beyond what efficiency differences
as manifested by different variances for parameter estimates can explain) from the efficient esti-
mates. In other words, the test essentially relies on the consistent estimates revealing endogeneity
by deviating from the efficient estimates. But this is a reliable test logic only if the consistent
estimates are indeed consistent estimates. For instance, suppose that there was also a time-varying
individual level unobserved confounding characteristic. Then the fixed effects estimator (which
correct only for endogeneity from fixed confounding unobservables such as µ) would not provide

Figure 5.2: The P-value (shaded area) of a χ2 Test Statistic of 8
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consistent estimates.
Acceptance of the Hausman test null hypothesis of no endogeneity thus rests on the assumption

that the consistent estimator is indeed consistent. If this is not the case, then the results of the
test may not be particularly reliable. In particular, one could conclude from a Hausman test that
regressors are exogenous when in fact they are not.

STATA Output 5.16 (5.1.do)

. xtreg Y P x_1 x_2 t, fe
note: x_2 omitted because of collinearity

Fixed-effects (within) regression Number of obs = 15000
Group variable: ID Number of groups = 5000

R-sq: within = 0.6423 Obs per group: min = 3
between = 0.1571 avg = 3.0
overall = 0.3393 max = 3

F(3,9997) = 5983.73
corr(u_i, Xb) = 0.0408 Prob > F = 0.0000

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 2.009386 .0794462 25.29 0.000 1.853656 2.165117
x_1 1.504437 .0178087 84.48 0.000 1.469528 1.539345
x_2 0 (omitted)

t 3.007264 .0299852 100.29 0.000 2.948487 3.066041
_cons 1.914701 .0600506 31.88 0.000 1.79699 2.032412

sigma_u 4.7890736
sigma_e 2.9976669

rho .71849437 (fraction of variance due to u_i)

F test that all u_i=0: F(4999, 9997) = 9.53 Prob > F = 0.0000

. estimates store f1

STATA Output 5.17 (5.1.do)

. xtreg Y P x_1 x_2 t, re

Random-effects GLS regression Number of obs = 15000
Group variable: ID Number of groups = 5000

R-sq: within = 0.6335 Obs per group: min = 3
between = 0.7687 avg = 3.0
overall = 0.7169 max = 3

Wald chi2(4) = 34353.45
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P .7600145 .0685936 11.08 0.000 .6255735 .8944555
x_1 1.35674 .0159516 85.05 0.000 1.325475 1.388005
x_2 2.094289 .0179129 116.92 0.000 2.05918 2.129397

t 3.00084 .0308106 97.40 0.000 2.940453 3.061228
_cons 2.738357 .060991 44.90 0.000 2.618817 2.857897

sigma_u 1.6081443
sigma_e 2.9976669

rho .2234789 (fraction of variance due to u_i)

. estimates store r1
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STATA Output 5.18 (5.1.do)

. hausman f1 r1, equations(1:1)

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
f1 r1 Difference S.E.

P 2.009386 .7600145 1.249372 .0400826
x_1 1.504437 1.35674 .1476968 .007918

t 3.007264 3.00084 .0064239 .

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)´[(V_b-V_B)ˆ(-1)](b-B)
= 971.61

Prob>chi2 = 0.0000
(V_b-V_B is not positive definite)

5.2 The Difference-in-Differences Model

We now turn to one particular model generally regarded as fitting most naturally into the family
of within estimators: the difference-in-differences estimator. At their intuitive core, difference-in-
differences models identify program impact as the difference in the changes in an outcome experi-
enced between participants and non-participants across an interval of time over which a program
was introduced. In other words, they identify program impact as the difference in outcome trend
between the two groups across an interval of time during which the program was introduced. They
are typically categorized as within estimators because they rely, ultimately, on the assumption that
any potential unobserved confounding variables are fixed with respect to time and identify program
impact with variation in outcomes and participation over time.

5.2.1 The Basic Model

The basic “bare bones” difference-in-differences (DID for brevity) estimator is very simple. At
a minimum, one must observe participants and non-participants at two points in time, before a
program is introduced and after it is introduced (we will refer to these two points as time periods
t = 1 and t = 2, respectively). Although we observe participants and non-participants before and
after the initiation of a program, it is critical that they can be empirically differentiated even before
the program commences.33 Define

Y
P
t

as the average (across some suitable representative sample) of an outcome of interest for participants
at time period t (where t = 1, 2 in our simple example). Define

Y
N
t

33We should also mention that “program commencement” need only occur in the population of reference for the
impact evaluation using the difference-in-differences estimator. For instance, the program might be long running but
access to it expands due to changes in eligibility requirements, geographic coverage, etc. such that for the population
subject to the expansion distinct pre- and post-program availability periods can be defined.
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analogously for non-participants. The DID estimate of program impact is then

Y
P
2 − Y

P
1 −

(
Y
N
2 − Y

N
1

)
From this expression the origin of the term “difference-in-differences” should be evident: the estima-
tor is the difference in the differences over time (between the pre- and post-program implementation
phases) for the participant and non-participant groups.

The DID estimator of program impact is thus the difference in changes over time in outcomes
between participants and non-participants. In other words, any difference in changes over time
between participants and non-participants can be ascribed to the program. But this implies that
the changes over time experienced by non-participants are indicative of the changes participants
would have experienced had they not begun participating after time period 1. The assumption that
the changes in the outcome over time among non-participants indicate the changes that would have
occurred among non-participants had they not participated after time period 1 (or, put more simply,
that had they not participated participants would have experienced the same average change in the
outcome over time that non-participants did experience) is called the parallel trend assumption.

The basic logic of this estimator is illustrated in Figures 5.3-5.6. We begin with Figure 5.3,
which illustrates the trajectory of an outcome Y (specifically the trajectory of the average value of
Y ) between two points in time, t = 1 and t = 2, for participants and non-participants. Between
t = 1 and t = 2 the program is introduced. Hence when we distinguish between participants and
non-participants we do so with reference to the participation decision made after the introduction
of the program; no one can participate before the program is introduced. Notice that the non-
participant sample experienced a lower average outcome over time than participants, but there was
some upward trend in the average outcome even for non-participants (in other words, there was
some upward trend in the average outcome for non-participants, even though they did not avail
themselves of the program after its introduction).

Figure 5.4 makes more explicit the average outcomes for participants and non-participants over
time. Following the discussion above, the average outcome is denoted

Y
k
t

where t = 1, 2 are the two time periods and k = P,N denote participants and non-participants,
respectively. A simple and straightforward estimator of program impact might be

Y
P
2 − Y

N
2

This estimator is simply the comparison of average outcomes between participants and non-participants
at time t = 2. We can see from this Figure that this might be a problematic estimator of program
impact. Given that participants and non-participants exhibited different average outcomes at time

period t = 1 (with Y
P
1 > Y

N
1 ) it is not at all clear that the average level of Y non-participants ex-

perienced at time period t = 2 are indicative of what participants would have experienced at t = 2
in the absence of the program. There is thus no reason to believe that this is an unbiased estimator
of the average effect of treatment on the treated.34 Moreover, to the extent that the experiences
of participants might not be indicative of what non-participants would have experienced had they
participated at time period t = 2, it is likely not an unbiased estimator of the average treatment
effect35 either.

34In this context, the average effect of treatment on the treated would be meaningful at time t = 2 and hence be
E(Y 1

2 −Y 0
2 |P = 1), where Y 1 and Y 0 are defined as in the beginning of this chapter and all preceding chapters: as the

outcome when individuals (in this case participants at time period t = 2) participate and do not do so, respectively.
35Which is given by E(Y 1 − Y 0).



188 CHAPTER 5. WITHIN ESTIMATORS

Figure 5.3: Outcome Trajectories, Participants and Non-Participants

Figure 5.4: Changes Over Time, Participants and Non-Participants
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Figure 5.5 illustrates the parallel trend assumption. As we have seen, the solid lines between the
dots represent the actual evolution of the average outcome for participants and non-participants.
The double dotted line illustrates the parallel trend assumption. This is the assumed evolution
of the outcome for participants had they not participated. Notice that it is parallel to the line
indicating the actual change in the average outcome for non-participants. Thus it assumes that
the change over time for participants would, had they not begun participating after time period 1,
have been the same as that for non-participants. The parallel nature of the lines is also the origin
of the expression “parallel trend”.

The change over time represented by the parallel trend assumption is represented in Figure 5.5
by ∆. The parallel trend assumption is that

∆ = Y
N
2 − Y

N
1

In other words, the changes implied by the parallel trend assumption equal those that non-
participants actually did experience.

Figure 5.5: The Parallel Trend Assumption

Finally, Figure 5.6 rounds out the graphical discussion. The DID estimator is

Y
P
2 − Y

P
1 −

(
Y
N
2 − Y

N
1

)
However, the parallel trend assumption tells us that

∆ = Y
N
2 − Y

N
1

Hence
Y
P
2 − Y

P
1 −

(
Y
N
2 − Y

N
1

)
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Y
P
2 − Y

P
1 −∆

Thus, the DID estimate of program impact is the change over time that participants experienced
minus an estimate of the change participants would have experienced in the absence of the program.
The parallel trend assumption allows us to form an estimate of that counterfactual change from
the change over time that non-participants actually did experience.

Typically, a regression version of the DID model is implemented. To fix ideas, let us continue
to assume that we observe participants and non-participants at only two time period, t = 1 and
t = 2. The classic regression model is

Yit = β0 + β1 · Pi · dt + β2 · Pi + β3 · dt + εit

where dt equals 1 if t = 2 and 0 if t = 1. Pi equals 1 if individual i is ever a participant in
the program (which in the context of this example means if they participate at time t = 2, after
the program is introduced). εit is an error term, independently and identically distributed across
individuals and within each individual across time. As we will see, the consequences of violations
of this assumption (particularly in the form of correlation of the errors over time for the same
individual) can carry rather severe consequences for the performance of the DID model.

In the context of this simple regression model, the regressor Pi (as it enters the regression
specification through the term β2 ·Pi) controls for fixed average differences between participants and
non-participants. The regressor dt (as it enters the regression specification through the term β3 ·dt)
controls for the common time trend in the outcome Y between participants and non-participants.
Finally, the interaction of Pi and dt (as it enters through the regression specification through the
term β1 ·Pi · dt) is program impact. Basically, the regressor formed by the interaction Pi · dt can be
viewed as capturing the difference in observed trend in the outcome Y between the participant and

Figure 5.6: The Difference-in-Differences
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non-participant samples. However, if the parallel trend assumption holds then the participant and
non-participant subpopulations would have experienced the same trends (i.e. the same differences
over time) in the outcome Y . Therefore, if the parallel trend assumption is reasonable, then any
difference in observed trends over time between the participant and nonparticipant groups (as
manifested by a non-zero estimate β̂1 of β1) must reflect average program impact.

STATA do-file 5.2.do provides a simulated empirical illustration of the DID model in action.
The basis for the data generating process behind the simulation are the following equations for the
potential outcomes (Y 1 and Y 0) and cost of enrollment (C):

Y 1
t = 6 + 2.5 · x1 + t+ µ+ εYt

Y 0
t = 4 + 2.5 · x1 + t+ µ+ εYt

Ct = 1− 2.5 · x1 − 2 · µ+ εCt

where x1 and µ are ∼ N (0,4) are time-invariant characteristics (x1 is “observable” while µ is
not). The εs are ∼ N(0,9) variables drawn independently across individuals and time. We draw
20,000 longitudinal observations. DID models are typically estimated with longitudinal data since
it is often only in the context of such data that we can differentiate who will and will not become
participants before a program is introduced.36 Once again, these specific values for the parameters
of this system are essentially randomly chosen (and we encourage the reader to experiment with
them in the .do file).

We consider two time periods, t = 1 and t = 2. The program is not available at time t = 1 (i.e.
no one can participate at time period t = 1). Hence the observed outcome Yt at time t = 1, Y1
equals Y 0

1 for all individuals (regardless of their participation decision in time period t = 2).

STATA Output 5.19 (5.2.do)

. * Basic summary statistics: participation

. by t, sort: tab P

-> t = 1

P Freq. Percent Cum.

0 8,996 44.98 44.98
1 11,004 55.02 100.00

Total 20,000 100.00

-> t = 2

P Freq. Percent Cum.

0 8,996 44.98 44.98
1 11,004 55.02 100.00

Total 20,000 100.00

The program becomes available between time periods 1 and 2, and individuals participate at
time period 2 if

Y 1
2 − Y 0

2 − C2 > 0

36Longitudinality is not, however, absolutely essential per se to the identification of the DID model. Below we will
discuss briefly the identification of the DID model with non-longitudinal data.
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Individuals can only participate at time period t = 2. No one participates in the program at
time t = 1 while some elect to do so at time t = 2. However, to set up the variable to control
for participant status, P , we let events in time period 2 dictate the value assigned to P in both
time periods. Thus P = 1 if the individual ever decides to participate once the program becomes
available to them, which in the context of this example means if they do so at time t = 2. P = 0
if the individual never decides to participate.

In Output 5.19 we present basic summary statistics regarding participation. 55.02% elect to
participate at time period t = 2. However, as the variable P is constructed, this means that 55.02%
have the value P = 1 at time period t = 1 as well.

Output 5.19 provides summary statistics by time t and participant status P . Had the program
been available at time t = 1 it is not necessarily the case that the same individuals that elected to
participate at time t = 2 would have done so at t = 1 as well.

If nothing else, a given individual’s draws for εCt might be such that they would have elected to
participate in the program at one of but not both time periods. Nonetheless there are two factors,
x1 and µ, that influence the participation decision and are not time-varying. Hence we would
expect some differences between participants and non-participants.

Such differences are evident in Output 5.20. The participants have, unsurprisingly, larger
average values for the time invariant determinants of potential outcomes and cost x1 and µ (this
is unsurprising, of course, because larger values for these drive down the cost of participation).
This contributes to higher average values to the potential outcomes for participants. Participants
are persistently different from non-participants, despite the fact that participation is a meaningful
choice only at time period t = 2.

This is due to the role of the persistent characteristics x1 and µ in shaping the cost of partici-
pation and hence the participation decision. In other words, though the exact subset participating
might have differed had the participation decision been made at t = 1 (due to the aforementioned
fluctuations in εCt between t = 1 and t = 2) the same kinds of individuals on average will tend to
participate regardless of the time period in which the participation decision is made. Finally, note
that the average values of the potential outcomes Y 1 and Y 0 are increasing over time. This is due
to the time trend.

In Output 5.21 we consider the average value of the observed outcome Y over time. Clearly, it
is rising (from 4.96787 to 7.12163) as events progress from t = 1 to t = 2.

We have already seen one possible reason: the positive time trend to the potential outcomes
Y 1 and Y 0 that are behind the observed outcome Y . However, it is also possible that this has to
do with some individuals deciding to participate at time period t = 2 and avail themselves of a
positive return from treatment.

In this case, that true positive return from treatment (i.e. program participation) at time period
t = 2 is

Y 1
2 − Y 0

2 = 6 + 2.5 · x1 + 2 + µ+ εY2 −
(
4 + 2.5 · x1 + t+ µ+ εY2

)
= 2

Although it is not shown in an Output table, the average individual-level program impact at time
period t = 2 in our simulated sample is indeed just about 2. We thus have our benchmark for
thinking about the results offered for alternative program impact estimators.

In Output 5.22 we turn to actual estimation of average program impact. First, we take the
average of the observed variable at the various possible permutations of P and t. In other words,
we take the average of the outcome at every possible combination of values for P and T : {P =
1, T = 2}, {P = 0, T = 2}, {P = 1, T = 1} and {P = 0, T = 2}. We then consider two estimators
of program impact.
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STATA Output 5.20 (5.2.do)

. * Basic summary statistics

. by t P, sort: summarize Y y1 y0 c x_1 mu epsilon*

-> t = 1, P = 0

Variable Obs Mean Std. Dev. Min Max

Y 8996 .864926 4.798989 -19.51024 19.01579
y1 8996 2.864926 4.798989 -17.51024 21.01579
y0 8996 .864926 4.798989 -19.51024 19.01579
c 8996 6.111167 5.274775 -11.20045 29.50878

x_1 8996 -1.242994 1.619078 -8.141914 4.645814

mu 8996 -1.014855 1.774254 -7.726572 6.37245
epsilony 8996 -.0127333 2.931612 -10.977 10.89786
epsilonc 8996 -.0260286 3.025866 -10.36658 12.19946

-> t = 1, P = 1

Variable Obs Mean Std. Dev. Min Max

Y 11004 8.322113 4.987734 -8.958962 28.28016
y1 11004 10.32211 4.987734 -6.958962 30.28016
y0 11004 8.322113 4.987734 -8.958962 28.28016
c 11004 -3.182799 5.403687 -24.35852 15.77308

x_1 11004 1.018218 1.678373 -4.997754 8.420812

mu 11004 .8050956 1.801293 -5.138058 7.586161
epsilony 11004 -.0285286 3.006486 -11.73894 12.81559
epsilonc 11004 -.0270622 2.992002 -11.01307 11.64383

-> t = 2, P = 0

Variable Obs Mean Std. Dev. Min Max

Y 8996 1.887782 4.782555 -18.25732 17.64407
y1 8996 3.887782 4.782555 -16.25732 19.64407
y0 8996 1.887782 4.782555 -18.25732 17.64407
c 8996 7.308511 4.082521 2.000105 31.73855

x_1 8996 -1.242994 1.619078 -8.141914 4.645814

mu 8996 -1.014855 1.774254 -7.726572 6.37245
epsilony 8996 .0101228 2.944227 -12.33223 11.07838
epsilonc 8996 1.171316 2.790233 -10.25706 11.07769

-> t = 2, P = 1

Variable Obs Mean Std. Dev. Min Max

Y 11004 11.40041 4.946977 -9.651225 31.53767
y1 11004 11.40041 4.946977 -9.651225 31.53767
y0 11004 9.40041 4.946977 -11.65123 29.53767
c 11004 -3.988187 4.39947 -27.70955 1.999446

x_1 11004 1.018218 1.678373 -4.997754 8.420812

mu 11004 .8050956 1.801293 -5.138058 7.586161
epsilony 11004 .0497687 3.011935 -11.02399 11.3459
epsilonc 11004 -.8324501 2.803536 -11.03448 9.127626

The first simple comparison of average outcomes between participants and non-participants at
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time period t = 2 in our simulated sample is the sample analog to the population-level estimator:37

E (Y2|P = 1)− E (Y2|P = 0)

In the context of our earlier graphical discussion of the DID estimator, this is equivalent to

Y P
2 − Y N

2

The estimate of average program impact from this simple (and naive) estimator if 9.512628. Given
that true average impact is 2, this represents a wild overestimate of impact.

STATA Output 5.21 (5.2.do)

. * Basic summary statistics

. by t, sort: summarize Y

-> t = 1

Variable Obs Mean Std. Dev. Min Max

Y 20000 4.96787 6.148853 -19.51024 28.28016

-> t = 2

Variable Obs Mean Std. Dev. Min Max

Y 20000 7.12163 6.793191 -18.25732 31.53767

The other estimate presented in Output 5.22 is the sample analog to the basic population DID
estimator:

E (Y2|P = 1)− E (Y1|P = 1)− (E (Y2|P = 0)− E (Y1|P = 0))

In the context of the earlier graphical discussion of the DID model, this is equivalent to

Y P
2 − Y P

1 −
(
Y N
2 − Y N

1

)
The DID estimate of program impact is 2.0554412, which is extremely close to the true value of 2.

With Output 5.23 we begin considering program impact through the lens of regression. Specif-
ically, Output 5.23 reports results from a simple regression of Y on P using the subsample from
time period t = 2.38 The estimate of program impact is, at 9.512628, the same as that yielded by
the simple, naive estimator just considered (i.e. simple comparison of average outcomes between
participants and non-participants at time t = 2). The most obvious reason that this estimate and
the simple comparison based one with which it is numerically identical deviate so greatly from the
true value (of 2) is due to the different types by x1 and µ in the participant and non-participant

37That statement is something of a mouthful, but the basic idea is quite simple. We wish to learn about population-
level parameters, which are defined across the population and, hence, expectations E(·) across the population are
the most appropriate and direct way of approaching them. Estimation attempts to learn something about these
population-level parameters from samples from those populations, which are typically (and essentially by definition)
smaller than the population itself. In these samples we form estimates of expectations by forming averages across
the sample. Hence our objective is an expectation, but we estimate it with a sample average, which is the analog of
a population expectation in the sample context.

38It would not really be beneficial to add the subsample from time period t = 1. This is a regression that essentially
considers cross-section (i.e. across individuals) variation in levels of Y and P . There is no meaningful cross sectional
variation in program participation at time t = 1 since participation was not an option at that time.
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subsamples. In Output 5.24 we add the observable x1 as a control, but the resulting estimate
of program impact is, at 4.75097, 240 percent of the true value of 2. Addition of the one fixed
determinant of potential outcomes that we can observe thus cuts some of the distance between
estimated and actual average program impact, but does not close that gap altogether.

STATA Output 5.22 (5.2.do)

. * Basic IE estimate and DID estimate

. mean Y if P==1&t==2

Mean estimation Number of obs = 11004

Mean Std. Err. [95% Conf. Interval]

Y 11.40041 .047159 11.30797 11.49285

. loc YP2=_b[Y]

. mean Y if P==1&t==1

Mean estimation Number of obs = 11004

Mean Std. Err. [95% Conf. Interval]

Y 8.322113 .0475475 8.228911 8.415314

. loc YP1=_b[Y]

. mean Y if P==0&t==2

Mean estimation Number of obs = 8996

Mean Std. Err. [95% Conf. Interval]

Y 1.887782 .0504238 1.78894 1.986624

. loc YN2=_b[Y]

. mean Y if P==0&t==1

Mean estimation Number of obs = 8996

Mean Std. Err. [95% Conf. Interval]

Y .864926 .050597 .7657443 .9641077

. loc YN1=_b[Y]

. loc basic=`YP2´-`YN2´

. di `basic´
9.512628

. loc DID=`YP2´- `YP1´ - (`YN2´-`YN1´)

. di `DID´
2.0554412

Output 5.25 provides results from the DID regression. The estimate of program impact is the
interaction of the program participation indicator and a dummy variable indicating whether an
observation is from time period t = 2 or not. In the STATA output, this is the estimate associated
with the term Pdt (as in P times a dummy variable for time t = 2). At 2.055441 that estimate
is exactly the same as that generated by the simple DID estimate presented in Output 5.22. The
regression based approach is in this instance essentially the same as that associated with difference-
in-differences in averages associated with the various permutations of the values of time t and
program participation P .
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STATA Output 5.23 (5.2.do)

. * Basic IE regression

.

. reg Y P if t==2

Source SS df MS Number of obs = 20000
F( 1, 19998) =18856.11

Model 447889.683 1 447889.683 Prob > F = 0.0000
Residual 475012.951 19998 23.7530228 R-squared = 0.4853

Adj R-squared = 0.4853
Total 922902.634 19999 46.1474391 Root MSE = 4.8737

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 9.512628 .0692747 137.32 0.000 9.376844 9.648412
_cons 1.887782 .0513848 36.74 0.000 1.787064 1.988501

STATA Output 5.24 (5.2.do)

. * Basic IE multiple regression

.

. reg Y P x_1 if t==2

Source SS df MS Number of obs = 20000
F( 2, 19997) =29603.57

Model 689893.562 2 344946.781 Prob > F = 0.0000
Residual 233009.072 19997 11.6522014 R-squared = 0.7475

Adj R-squared = 0.7475
Total 922902.634 19999 46.1474391 Root MSE = 3.4135

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 4.75097 .0587015 80.93 0.000 4.63591 4.86603
x_1 2.105798 .014612 144.11 0.000 2.077158 2.134439

_cons 4.505278 .0403131 111.76 0.000 4.426261 4.584295

5.2.2 Extensions and Complications

The Parallel Trend Assumption

In many applications the parallel trend assumption might be questionable. The premise of the DID
model is that, while there might be fixed differences between participants and non-participants,
both groups would experience the same changes in the outcome over time. This is tantamount to
assuming that any time-varying unobserved determinants of potential outcomes Y 1 and Y 0 either
do not exhibit a discernible trend (e.g. are identically distributed over time) or that any trend that
they do exhibit is the same among participants and non-participants.

This might not be a realistic assumption. For instance, suppose that income influences both
program participation and the potential outcomes. To fix ideas, suppose as well that those who
elect to participate in a program after its introduction tend to be poor. Suppose as well that income
growth is particularly slow for the poor. Then the non-participants might have experienced more
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rapid income growth over time, and hence different trends in potential outcomes. If we cannot
observe and hence control for income over time this could present a big problem.

STATA Output 5.25 (5.2.do)

. * Basic DID regression

.

. g dt=t-1

. ta dt

dt Freq. Percent Cum.

0 20,000 50.00 50.00
1 20,000 50.00 100.00

Total 40,000 100.00

.

. g Pdt=P*dt

.

. reg Y P dt Pdt

Source SS df MS Number of obs = 40000
F( 3, 39996) =10732.60

Model 769521.898 3 256507.299 Prob > F = 0.0000
Residual 955897.531 39996 23.8998282 R-squared = 0.4460

Adj R-squared = 0.4459
Total 1725419.43 39999 43.1365641 Root MSE = 4.8887

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 7.457187 .0694884 107.32 0.000 7.320988 7.593386
dt 1.022856 .0728933 14.03 0.000 .8799835 1.165729
Pdt 2.055441 .0982715 20.92 0.000 1.862827 2.248056

_cons .864926 .0515434 16.78 0.000 .7638998 .9659522

The parallel trend assumption is essentially untestable with only two waves of observations (one
before and one after program introduction). If more than one wave of observations was observed
before the introduction of the program, one could test whether the change in average outcomes over
pre-introduction time periods is the same between participants and non-participants. Of course, this
is not an exact test of the parallel trend assumption as required by the DID estimator since there is
still the possibility that the trends in the absence of the program might have begun to diverge after
the last wave of observations observed before the data was introduced. For instance, a program
might be introduced because it has been projected that two populations that had kept apace of each
other in terms of outcome trajectory might diverge. On the other end of the observational window,
the trouble with testing the parallel trend assumption with post-enrollment data is that we might
be picking up fundamental trends or the gradually mounting impact of the program (remember
that the effect of many human resource-related programs might be only very gradually felt in the
period after enrollment).

Another possible wrinkle is that one might elect to participate because the interval before
participation begins was somehow exceptional. A case in point is Ashenfelter’s dip, whereby
participants in adult job training programs have been observed to experience a dip in earnings
prior to their enrollment (Ashenfelter and Card (1985)). Individual enrollment in a program might
be driven in part by transitory shocks. This makes it extremely difficult to be sure that the pre-
participation outcomes observed for participants are indicative of what might have happened in
the absence of participation, after the temporary circumstances of the pre-enrollment shock have
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subsided.

Data Structure

In our numerical example involving the DID model, the simulated data was longitudinal (i.e., in the
context of that example, each individual was observed twice). Longitudinal data is not necessarily
required to operationalize the basic DID estimator. A DID model could in principle be estimated
with either a longitudinal sample or repeated cross sectional samples from the population for
whom program impact is to be estimated. What is required is simply that one has representative
samples from that population before and after program implementation and participants and non-
participants can be differentiated even before participation begins. The latter condition is often
difficult to satisfy outside of the context of longitudinal data and probably the major reason that
longitudinal data features so prominently in evaluations using the DID approach.

One advantage of longitudinal data is that it can provide some further flexibility in terms of
modelling. For instance, it allows for the estimation of a full “fixed effects” version of the DID
regression specification. A typical specification is along the lines of

Yit = β0 + β1 · Pi · dt +
N∑
j=2

φj · dj + β3 · dt + εit

where
N∑
j=2

φj · dj

is defined as in the dummy variable version of the straightforward fixed effects regression model
discussed earlier in this chapter. Below we will encounter an instance where this estimator might
be useful.

Many Time Periods and Programs

The DID regression model is easily extended to many time periods, and many programs. We
dispense with the latter first. Consider two programs, program A and program B. Participation
in these is captured by the dummy variables PA and PB. A DID specification that allows for
consideration of the impact of each of these programs (against the alternative of not participating)
is

Yit = β0 + β1A · PAi · dt + β1B · PBi · dt + β2A · PAi + β2B · PBi + β3 · dt + εit

It is also trivial to evaluate the possibility that the impact of A depends on participation in B by
adding the term

β1AB · PAi · PBi · dt
If one wanted simply to estimate the impact of participation in A compared with what would
have occurred in B, then the original DID specification would suffice, with those participating in B
treated in much the same fashion as non-participants were approached in that original specification.

The extension to many time periods is also quite straightforward. To fix ideas, define djt to be
a dummy variable that equals 1 if t = j and 0 otherwise. For instance, consider four time periods,
t = 1, 2, 3, 4. The define three dummy variables d2t , d

3
t and d4t such that, for example, d3t equals 1

if an observation is drawn from time period 3 (i.e. t = 3) and 0 otherwise (i.e. if t = 1, t = 2 or
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t = 4). Suppose as well that the program is introduced between time periods t = 2 and t = 3. A
DID specification might be along the lines of

Yit = β0 + β12 · Pi · d2t + β13 · Pi · d3t + β14 · Pi · d4t + β2 · Pi + β32 · d2t + β33 · d3t + β34 · d4t + εit

Since the program had not yet been introduced at time period t = 2 we would not expect there
to be any difference in the trend in the outcome between participants and non-participants at that
point under the parallel trend assumption. Thus, a significance test on β̂12 (specifically, a test of
whether the estimate is significantly different from zero) is tantamount to a test of the parallel
trend assumption. To the extent that the estimate is not statistically significantly different from
zero, the test result is consistent with the parallel trend assumption (though, as discussed above,
it does not preclude violation of it).

A test of whether the estimates β̂13 and β̂14 differ significantly39 has interesting implications:
assuming that all who participate make the decision to do so after t = 2 but before t = 3, this is
basically a test of whether program impact is evolving. If one is certain that the treatment effect
would not be cumulative (or declining) with time but instead a discrete, one-time increase in Y ,
one could estimate the more parsimonious40 specification

Yit = β0 + β12 · Pi · d2t + β134 · Pi · d34t + β2 · Pi + β32 · d2t + β34 · d3t + β34 · d4t + εit

where d34t equals 1 if t = 3 or t = 4.
In the last example, everyone who participated initiated participation at the same point in time

(between time periods t = 2 and t = 3). DID regression can also accommodate the possibility that
the participant subsample initiates participation at various points in time. One possibility would
be to categorize participants according to their point of initiation of participation. For instance,
suppose that waves of data were collected at four points in time: 2009, 2010, and 2011. Suppose
as well that the program was introduced at the end of 2009 but participants initiated participation
gradually, with some doing so immediately and some waiting until 2011. One could simply define
dummy variables P ji where j = 2010, 2011 to identify participants who initiated participation in a
given year indicated by the value of j. A possible specification would then be

Yit = β0 + β1,2010,2010 · P 2010
i · d2010t + β1,2010,2011 · P 2010

i · d2011t + β1,2011,2011 · P 2011
i · d2011t

+β2,2010 · P 2010
i + β2,2011 · P 2011

i + β3,2010 · d2010t + β3,2011 · d2011t + εit

where, for instance, d2011t equals 1 if the observation is drawn from the year t = 2011 and zero
otherwise.

39Formally, the null hypothesis would be
H0 : β13 = β14

while the alternative hypothesis would be
Ha : β13 6= β14

This test is a simple extension of the basic significance test discussed in the preceding chapter.
40In statistics, one specification or model is more parsimonious than another if it presents fewer parameters to be

estimated. Often a more parsimonious specification is, as in the case under discussion, somehow a restricted version
of the less parsimonious alternative. Parsimony has the advantage of, for instance, possibly more precise (i.e. with
lower standard errors) estimates as the information contained in the observations is focused on precise estimation of
fewer parameters. On the other hand, invalid restrictions can involve serious consequences, including the possibility
of bias where none existed in the less parsimonious model.
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Serial Correlation

A recent paper (Bertrand et al. (2004)) has called attention to a potentially important but generally
overlooked flaw in most conventional applications of the DID estimator. Bertrand et al. essentially
take for granted the unbiasedness of the estimates of program impact emerging from the standard
DID model. Instead, they focus on the estimate for the standard error of that impact, which will be
the basis for any inference about whether the program had a statistically significant impact. They
find that with serially correlated data (i.e. data where the random shocks εit are correlated over
time) DID models have an alarming tendency to deliver standard error estimates that suggest the
program had a significant impact even when it did not actually have one (a type-I error). Serially
correlated errors are a potentially important feature in many of the samples to which we might
apply the DID model. For instance, many human resource outcomes such as health might exhibit
a strong persistence in terms of unobserved shocks.

Bertrand et al. (2004) illustrate the severity of this problem with a rather dramatic exam-
ple using the Current Population Survey. Essentially, they introduce placebo laws (i.e. randomly
assigning fictitious laws to various observations within their CPS sample) and find that in an aston-
ishingly large percentage of cases the DID model suggested that the laws had a significant impact
on wages! To remedy this problem, the authors offer a number of suggestions. One possibility
would be to collapse the data from many time periods before and after implementation to just a
simple pre-/post-sample. The potential advantage of this is that a long string of pairwise highly
correlated errors might be reduced to two “aggregate” error terms, one from before implementation
of the program and one after, that might not be so highly correlated.

However, the authors appear to favor a Huber-White type estimator. A Huber-White type
estimator in this context41 corrects for violations of one of the major assumptions behind the
basic formula for estimation of standard errors for linear regression estimates. Specifically, the
standard formulas all assume that observations are independent. Correlation of regression errors
(the εs) clearly violates this assumption. The Huber-White adjustment to standard errors is a post-
estimation procedure, and so does not change the value of the estimates of regression parameters
(for the most part, the βs in the regression discussions to this point) but only the estimates of their
standard errors.

Huber-White standard errors are supported by nearly all commercial statistical packages-refer
to the documentation of your preferred program for more information. For instance, in STATA
they are implemented using the cluster option. For instance, for the last regression in the DID
simulation the proper syntax would be

reg Y P dt Pdt, cluster(ID)

where ID was the individual identifier. We would not expect the Huber-White clustering adjustment
to make much difference in the context of the DID example in this chapter since, in the context of
that example, the time-varying regression error was uncorrelated over time.

Another possible solution might involve implementing the dummy variable fixed effects specifi-
cation of the DID estimator that was discussed in a preceding subsection. This would allow for a
persistent component to the error term over time for each individual.

41Another purpose to which Huber-White type estimators are put is correction for heteroskedasticity. Heteroskedas-
ticity is the condition where the error variance is not constant across observations (when it is constant, we have the
circumstance of homoskedasticity or homoskedastic errors). Homoskedastic errors are the other major assumption
behind the formulas that produce the standard error estimates produced by linear regression routines in statistical
packages such as STATA.
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5.2.3 Experimental Samples

The DID estimator is often applied in the setting of experimental samples within which program
participation is (typically purposefully) randomly assigned. The typical study design template
involves a sample from a population of interest who are observed before a program is introduced
and after it has been introduced with random determination of program participation. The model
estimated is then typically

Yit = β0 + β1 · Pi · dt + β2 · Pi + β3 · dt + εit

where the regressors are defined in the same fashion as was the case when this basic DID regression
model was first introduced. A key advantage of this before-after, program-control data design is
that when this DID specification is estimated with data from such a design there is a natural test
of whether randomization was indeed successful. Specifically, if randomization of participation is
successful there should not be average fixed differences between participants and non-participants
and hence β̂2 should not be statistically significantly different from zero. Alternatively, when it is
significantly different from zero (i.e. when randomization may not have been fully successful) the
DID model can offer a fall-back position for estimation of program impact by quasi-experimental
means.

5.3 Some Closing Thoughts

Within estimators, including the difference-in-differences estimators, have an incredibly attractive
feature: they do not require much in the way of explicit modelling of the program participation
decision. This is in contrast to approaches such as instrumental variables, which will be discussed
in the next chapter. This is a major selling point for within estimators: they offer the potential
for identification of program impact while avoiding the possible need for many, possibly elaborate
assumptions regarding the “structure” of individual behavior regarding the joint determination
of outcomes and participation. By and large, they achieve this by focusing on variation within
individuals (or other units of observation, depending on the application). The individual thus in
some sense serves as a control for themselves.

However, it must be recognized that the price of this is a somewhat awkward assumption: that
there is sufficient within variation in outcomes and participation to make these models practically
estimable, but that there is no substantial variation in the potential unobserved confounders. In
other words, we assume that outcomes and participation vary a lot over our observational window
for the individual, but the things that are unobserved and related to outcomes and participation are
relatively static. There is something almost implausible to this notion. Thus, while within models
allow one to avoid elaborate modelling of the joint determination of outcomes and participation,
their “black box” appeal to a fixed unobservable confounder is not a free ride in the sense that that
notion seems inherently incongruous with the requirements (in terms of variation) of these models
for what can be observed.



Chapter 6

Instrumental Variables

We now turn to the final quasi-experimental estimator of program impact that we consider in this
manual: instrumental variables. Instrumental variables is an estimation approach for recovering
consistent estimates of program impact when program participation might be associated with
unobserved characteristics that also influence the outcome of interest, a complication that we have
seen yields biased and inconsistent estimates of program impact from simple methods of estimating
impact such as comparison of outcomes between participants and non-participants or regression of
the outcome of interest on an indicator of program participation. As we will learn in this chapter,
instrumental variables is a potentially powerful tool for program impact evaluation, but one that
involves strong assumptions and that can be challenging to interpret.

The instrumental variables strategy is based on the insight that there may be different sources
or drivers of variation in program participation. Indeed, in our various numerical examples to
this point, we typically introduced several different observed and unobserved characteristics of the
individual that influence the program participation decision and hence variation in participation
status across the population and any representative sample from it.

We can think of each of these characteristics as generating different “channels” of variation
in program participation, some of which are associated with the unobserved determinants of the
outcome of interest and thus from an endogeneity standpoint taint the overall variation in program
participation by that association. However, some of those channels of variation are likely not related
to those unobservables. They thus provide variation in program impact free from the endogeneity
concerns associated with the overall variation in program participation.

Instrumental variables seeks to identify program impact by focusing on channels of variation
in program participation associated with observed characteristics of the individual not correlated
with unobservables associated with the outcome of interest. Specifically, it focuses on the variation
in program participation driven by observed characteristics that meet three criteria. First, such
observed characteristics do not independently and directly influence the outcome. In other words,
whatever influence they have on outcome variation is felt through their impact on the variation in
program participation. Second, such observed characteristics significantly influence the participa-
tion decision. Third, and crucially, these observed characteristics are independent of the unobserved
confounding characteristics that influence the outcome of interest. Observed characteristics that
fit these criteria are referred to as instruments.

Instrumental variables thus involves rather strong assumptions concerning valid instruments.
As a program impact evaluation method, additional controversy has arisen over the interpretation
of the estimates of program impact yielded by it. Specifically, in a world in which program impact
varies between individuals, it turns out that the estimate of program impact yielded by instrumental

202
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variables is a consistent estimate of program impact only for the types of people whose program
participation behavior is responsive to variation in the instrument(s) employed. Despite the strong
assumptions and interpretational challenges, however, instrumental variables is a popular program
impact estimator that is today the focal point of exciting methodological research on numerous
fronts.

6.1 Instrumental Variables Basics

In this section, we introduce the classic linear instrumental variables model. We then discuss
instrumental variables estimation in the limited dependent variable setting. Finally, we discuss
testing of the assumptions related to the instrumental variables model.

6.1.1 The Classic Linear Model

We begin with a behavioral model. Doing so is particularly important in the case of instrumental
variables because it can help to clarify which sort of behavioral pathways are permissible under
this approach. While our model is certainly not the only behavioral model that can motivate
instrumental variables estimation, all models used to do so must adhere to the basic restrictions
present in ours.

For present purposes, we will assume a constant program impact (i.e. we assume that pro-
gram impact does not vary across individuals). The determination of the potential outcomes for
representative individual i are as follows:

Y 0
i = β0 + β2 · xi + β3 · µi + εYi

Y 1
i = β0 + β1 + β2 · xi + β3 · µi + εYi

We have an observed (x) and unobserved (µ) individual-level characteristic determining potential
outcomes as well as a purely random, idiosyncratic unobserved component εY . We assume that the
three are independently distributed. Program impact for individual i is

Y 1
i − Y 0

i

= β0 + β1 + β2 · xi + β3 · µi + εYi

−
(
β0 + β2 · xi + β3 · µi + εYi

)
= β1

Thus, program impact is constant across individuals.
Note that we have dropped the time subscript t in these potential outcome equations. We

will do the same in the cost equation to be introduced shortly. We no longer distinguish between
fixed and time-varying observed or unobserved characteristics. Although instrumental variables
is sometimes applied in the panel data setting, it is a cross-sectional method in the sense that
within variation or even repeated measures per se are not intrinsically necessary to apply it. The
logic of identification of program impact (i.e. the manner in which instrumental variables allows
for consistent estimation of program impact when program participation is endogenous) that we
establish in the cross-sectional case applies to any other setting where we might apply it (such as to
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the change in program participation in a panel data setting where one might use both the within
and instrumental variables approaches simultaneously1).

A regression specification can be derived in much the same fashion as with behavioral models
in preceding chapters. The observed outcome is

Yi = Pi · Y 1
i + (1− Pi) · Y 0

i

= Pi ·
(
β0 + β1 + β2 · xi + β3 · µi + εYi

)
+ (1− Pi) ·

(
β0 + β2 · xi + β3 · µi + εYi

)
= β0 + β1 · Pi + β2 · xi + β3 · µi + εYi

Notice that the unobservable µi appears in this equation, and would hence be an element of the
regression residual.

The cost of program participation is given by

Ci = γ0 + γ1 · xi + γ2 · z1i + γ3 · z2i + γ4 · µi + εCi

With one exception (the variables z1 and z2) this is, given the potential outcome equations, a fairly
standard cost function in the tradition of the behavioral models discussed thus far. Individual i
will choose to participate (i.e. their value for the program participation indicator P , Pi, equals 1)
if

Y 1
i − Y 0

i − Ci > 0

or
β1 − γ0 − γ1 · xi − γ2 · z1i − γ3 · z2i − γ4 · µi − εCi > 0

where we assume that εCi is uncorrelated with both εYi and the variables z1i and z2i.
There are several important things to note about this. First, the observed individual charac-

teristic xi influences participation and hence we would expect that, other things being equal, the
average value of this characteristic should differ between participants and non-participants. There
will thus clearly be selection into program participation based on observables. Second, the same is
true of the unobserved characteristic µi. In other words, we have an unobserved characteristic that
influences participation as well as the outcome of interest Y (where Yi = Pi · Y 1

i + (1 − P ) · Y 0
i ).

Finally, we have individual characteristics z1i and z2i that do not influence directly the outcome
of interest Yi. z1i and z2i do influence the program participation decision, and are independent of
either of the unobserved determinants of the outcome, µ and εYi (we introduce no avenue for there
to be correlation). In other words, the zs meet all of the criteria for an instrument.

It should now be clear that unbiased or consistent estimation of program impact (i.e. unbiased
estimation of β1) by straightforward means (such as regression of Yi on Pi and xi) is probably not
in the cards. The unobserved characteristic µ influences, and hence is correlated with, program
participation. However, it is also a determinant of the outcome Y . We are thus presented with the
classic endogeneity challenge as a regressor, Pi, is correlated with the error term β3 · µi + εYi (in
this instance via the correlation between P and µ).

Instrumental variables attempts to recover a consistent estimate of program impact by restrict-
ing attention to the variation in program participation driven by variation in the instrumental

1The application of the instrumental variables approach in the context of a within model would most likely be
motivated by concerns of confounding time-varying unobserved characteristics, since the within model itself would
address any concerning fixed unobserved characteristics.
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variables. Specifically, instrumental variables estimates the impact on the outcome of interest of
the variation in program participation associated with those instruments.

In Figure 6.1 we lay out the “classical” setting where instrumental variables is applied. As in
earlier diagrams of this nature, the solid line arrows indicate causal pathways (as in variation in
Z causes variation in P ) while the dashed lines merely indicate statistical association that may or
may not meet any reasonable definition of causality. In Figure 6.1 we have three determinants of an
outcome of interest Y : program participation P , an observed characteristic X, and an unobserved
characteristic µ. P is associated with (i.e. correlated with) both X and µ. Finally, we have an
“instrument” Z that influences program participation P but is unrelated to the other determinants
of the outcome Y . Notice that the behavioral model we have laid out is completely consistent with
this framework.

Clearly, straightforward regression of Y on P and X with a sample of individuals whose values
for {Y, P,X} were determined within such a framework would likely not yield an estimate of pro-
gram impact that actually reflected the true causal effect of program participation on the outcome
Y . To review the lessons of Chapters 2 and 4, the reason is that in such a regression, P is essentially
being asked to play two empirical roles:

1. As a control for program participation (which is what we want it to do);

2. As a proxy for µ, the unobserved determinant of Y with which program participation P is
associated (a role that we do not want participation to play for purposes of estimating the
causal impact of participation P on the outcome Y ).

The muddled nature of the empirical role of program participation P yields a muddled (or, more
formally, biased and inconsistent) estimate of program impact with such a straightforward regres-
sion.

Instrumental variables solves this problem by focusing only on the “channel” of variation in
program participation driven by the instrument Z. Given that it is related only to variation in
the instrument Z, which is itself unrelated to µ in particular, this channel of variation in program
participation P should be unrelated to µ. This is the essence of the strategy of instrumental
variables for identification of the causal impact of program participation P on the outcome Y : focus
only on that part of the variation in program participation out of the overall observed variation
in P that is related to a characteristic Z (the instrument) that we can be sure is not related to
the confounding unobservables µ with which the overall variation in program participation P is
associated.

The justification for this approach is that the channel of variation in program participation
P driven by the instrument Z is “clean” in the sense of being uncorrelated with the otherwise
troublesome unobservable µ. An estimate of the impact on Y of variation in this channel of
program participation P should thus reflect program impact since that channel of variation is not
tainted by association with unobserved characteristics such as µ.

In Figure 6.2 we expand a bit on Figure 6.1, offering a somewhat more “relaxed” instrumental
variables framework. Two modifications to Figure 6.1 are offered in Figure 6.2. First, the solid
arrow connection Z and P in Figure 6.1 is replaced by a dotted line. Technically, the instrument Z
needs only to be correlated with program participation P (i.e. a causal relationship is not essential).
One needs to be careful threading this needle, however: under no circumstances can the instrument
be correlated with the unobservable µ. Second, a statistical association between the instruments
Z and the observed determinants of P is technically allowed.

While all of this may seem theoretically reasonable, the reader could be forgiven for wondering
how, in practice, this actually works. How does one pick out the channels of variation in program
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participation associated only with the instruments? To make this a bit more concrete, we focus on
the case of just one instrument. Specifically, we assume for present purposes that of the variables
{z1i, z2i} we observe only z1i. The typical estimation approach in this case is two-stage least
squares, so named because it involves two stages of estimation. The steps in two-stage least squares
estimation are:

1. Estimate by ordinary least squares regression the model:

Pi = κ1 + κ2 · z1i + κ3 · xi + υi

2. Compute predicted program participation from the fitted model:

P̂i = κ̂1 + κ̂2 · z1i + κ̂3 · xi

3. Regress Yi on P̂i and xi.

The estimated coefficient on P̂i from the last step is a consistent estimator of β1. The steps
would have been exactly the same if we had used z2i instead of z1i (and we could have used both
instruments simultaneously in this fashion, regressing P on x, z1 and z2 in step 1).2

From steps 1 and 2 we can see how instrumental variables focuses on only that portion of the
variation in program participation associated with the instrument. The model

Pi = κ1 + κ2 · z1i + κ3 · xi + υi
2Use of more than one instrument for a single endogenous variable, which is what would occur if we used z1 and

z2 simultaneously as instruments, is called over-identification.

Figure 6.1: Instrumental Variables Schematic
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essentially parses the variation in program participation Pi into two parts: that associated with
the instrument z1 and any of the other observed exogenous variables in the model (e.g. x) and
that associated with every other determinant of program participation, which is relegated to υi.
When we predict P̂i we create a variable the variation in which is driven entirely by variation in the
exogenous variables in the model, xi, and the instrument z1i. When we then use P̂i as a regressor
in the final step, we thus estimate the regression model determining the outcome Yi with only that
variation in program participation Pi associated with the exogenous variable xi and the instrument
z1i.

One might ask why we need an instrument if the exogenous variable xi appears in the first stage
regression. To see why, suppose that we had simply regressed Pi on just the exogenous variable xi.
Predicted program participation would then be

P̂i = κ̂1 + κ̂3 · xi

Notice that this is simply a linear function of xi and hence its entire variation depends on, and
matches, the variation in xi. Including P̂i in this instance is thus tantamount to including xi twice
as a regressor. The regression determining the outcome then becomes:

Yi = β0 + β1 · P̂i + β2 · xi + β3 · µi + εYi

= β0 + β1 · (κ̂1 + κ̂3 · xi) + β2 · xi + β3 · µi + εYi

= ψ0 + ψ1 · xi + β3 · µi + εYi

where
ψ0 = β0 + β1 · κ̂1

and
ψ1 = β1 · κ̂3 + β2

The point is that we cannot separately identify β1 in this new model. Were one to attempt to
estimate this in a commercial package such as STATA (calling the first-stage predicted program
participation variable phat), they would get an error along the lines of

note: phat omitted because of collinearity

What this means is the phat was dropped because it was perfectly correlated with x. For all intents
and purposes, it carries the same information as x. When one tries to include two perfectly corre-
lated regressors in a regression model, the resulting situation is referred to as multicollinearity,
under which estimation of the model with both regressors impossible.

This example provides insight into one of the other common terms used to describe instruments:
exclusion restrictions. The idea behind this term is that instruments are variables associated
with program participation3 Pi but that do not influence Yi directly and hence are excluded from
the outcome equation explaining variation in Yi. As we have seen, an excluded variable is essential
for basic identification of a treatment effect (at least in the context of the linear two-stage least
squares estimator).

In the parlance of instrumental variables estimation, xi is usually referred to as an “exogenous
variable”. This is a term usually reserved for variables that are not determined within the system.
In common usage in instrumental variables applications, it often effectively would seem to mean

3Or, more generally, the endogenous variable, but wherever possible we frame the discussion in this manual in
terms of the program impact estimation challenge.
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a variable not determined within the system but not an instrument, since instruments are often
referred to separately as instruments. However, strictly speaking, this is a somewhat confusing
attempt at drawing a distinction since, as this model is written, both x and the zs fit the classical
definitions of exogeneity.

To examine the properties of this simple instrumental variables estimator, we derive an expres-
sion (i.e. formula) for it. This formula happens to be the same as that behind the two-stage least
squares estimator, though we do not initially derive it directly from the two-stage approach. In-
stead, we use this derivation exercise as an opportunity to derive an alternative (to the least squares
or maximum likelihood methods introduced in chapter 4) method for estimating the parameters of
a statistical model: the method of moments. The method of moments seeks estimates of the
parameters of a model that satisfy “moment conditions”. These are essentially things that should
be true of the model given the estimate.

To fix ideas, let us briefly consider the simple regression model

yi = ζ0 + ζ1 · xi + ϑi

This is a simple model relating one variable (yi) to variation in another (xi). We assume that xi is
independent of ϑi. Assuming that we have a sample of N individuals for whom we observe {yi, xi}
(for each of the individuals i = 1, ..., N), simple ordinary least squares regression of yi on xi using
this sample yields the estimates

ζ̂1 =

∑N
i=1 (xi − x) · (yi − y)∑N

i=1 (xi − x)2

and
ζ̂0 = y − ζ̂1 · x

Figure 6.2: “Relaxed” Instrumental Variables Schematic



6.1. INSTRUMENTAL VARIABLES BASICS 209

Thus we have the familiar least squares estimates.
The method of moments starts by asking what should be true of estimated parameters of the

model, and solving for estimates that fulfill that requirement. First, we would hope that the
estimated errors would be zero on average. Since the estimated error term in this simple model is

ϑ̂i = yi − ζ̂0 − ζ̂1 · xi

the average of the estimated errors across the sample is

ϑ =

∑N
i=1 ϑ̂i
N

Setting this equal to zero and multiplying both sides by N , we have

N∑
i=1

ϑ̂i =
N∑
i=1

(
yi − ζ̂0 − ζ̂1 · xi

)
= 0

This is our first moment condition.
The second traditional moment condition applied in this setting is motivated by the idea that

the regressor xi should be independent from the estimated error ϑ̂i. This moment condition is
almost always written

N∑
i=1

xi · ϑ̂i =
N∑
i=1

xi ·
(
yi − ζ̂0 − ζ̂1 · xi

)
= 0

This condition is sometimes motivated by the notion of finding the parameter estimates ζ̂0 and ζ̂1
that sets the covariance of the regressor xi and the estimated error ϑ̂i equal to zero (e.g. Griffiths
et al. 1993). Independence implies zero covariance.

The algebraic justification for this is straightforward. The covariance of x and ϑ̂ is∑N
i=1 (xi − x) ·

(
ϑ̂i − ϑ̂

)
N − 1

However, the first moment condition guarantees that

ϑ̂ = 0

The covariance then becomes∑N
i=1 (xi − x) ·

(
ϑ̂i − ϑ̂

)
N − 1

=

∑N
i=1 (xi − x) ·

(
ϑ̂i
)

N − 1
=

∑N
i=1

(
xi · ϑ̂i − x · ϑ̂i

)
N − 1

=

∑N
i=1

(
xi · ϑ̂i

)
N − 1

− x
∑N
i=1 ϑ̂i

N − 1

However, since our first moment condition guarantees that the average of ϑ̂i is zero, we have∑N
i=1

(
xi · ϑ̂i

)
N − 1

− x
∑N
i=1 ϑ̂i

N − 1
=

∑N
i=1

(
xi · ϑ̂i

)
N − 1

− x · 0 =

∑N
i=1

(
xi · ϑ̂i

)
N − 1

Setting this equal to zero and multiplying both sides of the equation by N − 1 we have the second
moment condition.
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A related conceptual approach to the second moment condition is an orthogonality condition.
Two vectors (such as [x1, x2, ..., xN ] and [ϑ̂1, ϑ̂2, ..., ϑ̂N ]) are orthogonal if their inner product4 is
equal to zero. This is equivalent to saying that they are linearly independent (that is, they have no
linear association), which is the same as saying that they are uncorrelated. It turns out that the
left hand side of the second moment condition

N∑
i=1

xi · ϑ̂i =
N∑
i=1

xi ·
(
yi − ζ̂0 − ζ̂1 · xi

)
is the inner product of [x1, x2, ..., xN ] and [ϑ̂1, ϑ̂2, ..., ϑ̂N ]. Therefore, when we set it equal to zero
(as with the second moment condition) we effectively make the uncorrelatedness of x and ϑ̂ the
second moment condition.

We thus have two moment conditions:

N∑
i=1

(
yi − ζ̂0 − ζ̂1 · xi

)
= 0

and
N∑
i=1

xi ·
(
yi − ζ̂0 − ζ̂1 · xi

)
= 0

The method of moments condition finds the values for ζ̂0 and ζ̂1 that insure that these two moment
conditions hold. The solutions that do so are

ζ̂1 =

∑N
i=1 (xi − x) · (yi − y)∑N

i=1 (xi − x)2

and
ζ̂0 = y − ζ̂1 · x

In other words, for this simple model the method of moments estimators and estimates of ζ̂0 and
ζ̂1 are the same as those from ordinary least squares estimation.

In this simple example we were able to solve for unique estimates of ζ̂0 and ζ̂1. The reason that
we were able to do so is that there were as many moment conditions as statistical parameters that
we wished to estimate. In classical mathematical terms, we had “as many equations as unkowns”.
Later, we will learn about a generalization of the method of moments that allows for the possibility
of more moment conditions than parameters to be estimated. In general, when there are more
parameters to be estimated than moment conditions the model is under-identified. The earlier
discussion about attempting to estimate two-stage least squares with the observed covariate xi as
the only first-stage regressor is an example of this. Effectively, we were attempting to estimate

4The inner product is a concept from matrix algebra. If one had two vectors

[c11, c12, ..., c1K ]

and
[c21, c22, ..., c2K ]

The inner product of these two vectors would be

c11 · c21 + c12 · c22 + ...+ c1K · c2K =

K∑
k=1

c1k · c2k

.
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two parameters (β1 and β2) with just one instrument, xi.
5 When there are as many parameters

to be estimated as moment conditions, the model is just-identified. Finally, when there are
more moment conditions than parameters to be estimated the model is over-identified. The
current simple regression example above is of a just-identified model, because we have two moment
conditions

N∑
i=1

(
yi − ζ̂0 − ζ̂1 · xi

)
= 0

and
N∑
i=1

xi ·
(
yi − ζ̂0 − ζ̂1 · xi

)
= 0

for the parameters to be estimated, ζ0 and ζ1.
To conclude this introduction to the method of moments, let us consider the precise semantics

of method of moments estimators. For instance,

N∑
i=1

xi ·
(
yi − ζ̂0 − ζ̂1 · xi

)
= 0

is a moment condition, as in “we are imposing some condition on this moment”. The moment
itself is

N∑
i=1

xi ·
(
yi − ζ̂0 − ζ̂1 · xi

)
Hence the condition we are imposing on the moment (making it a “moment condition”) is that
it equals zero. The distinction between a moment condition and the moment itself will become
important below, when we consider the generalization of the method of moments under which we
cannot necessarily find parameter estimates for which moment conditions hold exactly.

We now focus our thinking about the method of moments approach on the instrumental variables
problem. To begin with, the regression model for Y that we developed at the outset of this chapter
is

Yi = β0 + β1 · Pi + β2 · xi + β3 · µi + εYi = β0 + β1 · Pi + β2 · xi + νi

where
νi = β3 · µi + εYi

Basically, this is the original regression model with the error term collected into one variable for
expositional simplicity. For further simplicity6 we temporarily introduce the restriction that β2 = 0,

5The equation of interest at that point was

Yi = β0 + β1 · Pi + β2 · xi + β3 · µi + εYi

Estimation of two-stage least squares with just the regressor xi in both stages leaves only two moment conditions:

N∑
i=1

(Yi − β0 − β1 · Pi − β2 · xi) = 0

N∑
i=1

xi · (Yi − β0 − β1 · Pi − β2 · xi) = 0

(The term β3 · µi is subsumed into the regression error since µi is not observable.) There are just two moment
conditions with which to estimate three parameters, β0, β1 and β2, a clear example of under-identification.

6Specifically, to avoid using the more complicated matrix algebra required for multiple regression.
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yielding the model:
Yi = β0 + β1 · Pi + νi

Thus we have recast this as a single regressor model.7

At this stage, we consider just one of the instruments introduced through the cost function, z1i
(the choice of which of the two instruments, z1i or z2i, to consider at this stage is random). We
now need to characterize the moment conditions appropriate for instrumental variables estimation
of β0 and β1 (though our primary interest lies with the latter since it is the impact of program
participation Pi). To do so, we suppose that we have a sample of N individuals for whom we
observe {Yi, Pi, z1i} for each of those i = 1, ..., N individuals. The first and most obvious moment
condition from the last example of the method of moments is that average value of the predicted
error term equals zero: ∑N

i=1 ν̂i
N

=

∑N
i=1

(
Yi − β̂0 − β̂1 · Pi

)
N

= 0

Multiplying both sides by N we have the final version of the first moment condition

N∑
i=1

(
Yi − β̂0 − β̂1 · Pi

)
= 0

This is a fairly standard moment condition for most regression models the primary purpose of which
is to identify the estimate of the constant term, β̂0.

For the second moment condition, we look to the required properties of an instrument such as
z1i. These are, most obviously, that the instrument play no direct role in the determination of Yi (a
condition guaranteed by the regression specification, which permits only Pi and νi to play a direct
role in determining Yi) and that the instrument be uncorrelated with the error term νi. This latter
requirement suggests a moment condition:

N∑
i=1

z1i · (νi) =
N∑
i=1

z1i ·
(
Yi − β̂0 − β̂1 · Pi

)
= 0

This can be thought of as either a zero-covariance condition or an orthogonality condition, but the
latter language is typically employed.

We now have two moment conditions, the requirement for exact identification since we are
solving for estimates, β̂0 and β̂1, of two parameters, β0 and β1, respectively. The moment conditions
are

N∑
i=1

(
Yi − β̂0 − β̂1 · Pi

)
= 0

and
N∑
i=1

z1i ·
(
Yi − β̂0 − β̂1 · Pi

)
= 0

Solving these for β̂0 and β̂1 yields the instrumental variables estimator

β̂1 =

∑N
i=1 (z1i − z) ·

(
Yi − Y

)
∑N
i=1 (z1i − z) ·

(
Pi − P

)
7This specification is reasonable as long as β2 = 0 or γ1 = 0, in which case participation and x are not associated.

For present purposes, one can assume that either of these holds.
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where

z =

∑N
i=1 zi
N

In other words, where z is defined analogously to Y and P .8

Now that we have a formula for the linear instrumental variables estimator (for the case of a
single regressor that is endogenous, Pi, and a single instrument z1i) we can proceed to examine the

8We have derived a formula for the instrumental variables estimator, which before this point had been introduced
through the framework of two-stage least squares estimation. The same basic expression can be derived directly
from the two-stage least squares estimator. To simplify things, consider the framework of an outcome yi, a possibly
endogenous variable xi and an instrument zi. Furthermore, suppose, that y = x = z = 0 (in other words, suppose
that all three variables have a mean or average of 0). This leads to the following two-stage system:

xi = ω · zi + εi

yi = ζ · xi + ϑi

Notice that restricting the means of all the variables to zero has removed the need for constant terms in the model.
The first stage ordinary least squares estimator is

ω̂ =

∑N

j=1
xj · zj∑N

j=1
(zj)

2

leading to a predicted endogenous variable value of

x̂i =

∑N

j=1
xj · zj∑N

j=1
(zj)

2
· zi

When we regress yi on x̂i, the ordinary least squares estimate of ζ is

ζ̂ =

∑N

i=1
x̂i · yi∑N

i=1
(x̂i)

2
=

∑N

i=1

(∑N

j=1
xj ·zj∑N

j=1
(zj)

2 · zi
)
· yi

∑N

i=1

(∑N

j=1
xj ·zj∑N

j=1
(zj)

2 · zi
)2

=

(∑N

j=1
xj ·zj∑N

j=1
(zj)

2

)
·
∑N

i=1
zi · yi(∑N

j=1
xj ·zj∑N

j=1
(zj)

2

)2

·
∑N

i=1
(zi)

2

=

∑N

i=1
zi · yi∑N

j=1
xj ·zj∑N

j=1
(zj)

2 ·
∑N

i=1
(zi)

2

=

∑N

i=1
zi · yi∑N

j=1
xj · zj

=

∑N

i=1
zi · yi∑N

i=1
xi · zi

which is essentially the expression ∑N

i=1
(zi − z) · (yi − y)∑N

i=1
(xi − x) · (zi − z)

when all of the variables involved have a mean or average of zero.
Another popular general motivation for the two-stage least squares estimator which we apply to the simple model,

begins with the simple covariance between yi and zi:

cov (yi, zi) = cov (ζ · xi + ϑi, zi)

However, the covariance of a valid instrument (zi) and the regression error from the equation of interest, ϑi, should
be zero. We then have

cov (yi, zi) = cov (ζ · xi + ϑi, zi) = cov (ζ · xi, zi) = ζ · cov (xi, zi)

Dividing both sides by cov(xi, zi) we have

ζ =
cov (yi, zi)

cov (xi, zi)

which is of the same basic structure as the earlier formula for the two-stage least squares estimator.
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properties of the estimator. We begin with that formula

β̂1 =

∑N
i=1 (z1i − z) ·

(
Yi − Y

)
∑N
i=1 (z1i − z) ·

(
Pi − P

) =

∑N
i=1 (z1i − z) · Yi∑N

i=1 (z1i − z) ·
(
Pi − P

)
(the second step is explained in Chapter 4) and insert the true data generating process behind Yi:

β̂1 =

∑N
i=1 (z1i − z) · Yi∑N

i=1 (z1i − z) ·
(
Pi − P

) =

∑N
i=1 (z1i − z) · (β0 + β1 · Pi + νi)∑N

i=1 (z1i − z) ·
(
Pi − P

)

= β0 ·
∑N
i=1 (z1i − z)∑N

i=1 (z1i − z) ·
(
Pi − P

) + β1 ·
∑N
i=1 (z1i − z) · Pi∑N

i=1 (z1i − z) ·
(
Pi − P

) +

∑N
i=1 (z1i − z) · νi∑N

i=1 (z1i − z) ·
(
Pi − P

)

= β0 · 0 + β1 ·
∑N
i=1 (z1i − z) ·

(
Pi − P

)
∑N
i=1 (z1i − z) ·

(
Pi − P

) +

∑N
i=1 (z1i − z) · νi∑N

i=1 (z1i − z) ·
(
Pi − P

)
= β1 · 1 +

∑N
i=1 (z1i − z) · νi∑N

i=1 (z1i − z) ·
(
Pi − P

)
The next logical step would be to take the expectation of β̂1 and see if it equals β1, establishing
the unbiasedness of the instrumental variables estimator if it does.

Unfortunately, it doesn’t:

E
(
β̂1
)

= β1 + E

 ∑N
i=1 (z1i − z) · νi∑N

i=1 (z1i − z) ·
(
Pi − P

)
 6= β1

We cannot break down the term ∑N
i=1 (z1i − z) · νi∑N

i=1 (z1i − z) ·
(
Pi − P

)
with expectations. The reason goes back to a basic property of expectations: E(A·B) = E(A)·E(B)
only if A and B are independent. Because Pi is correlated with νi (via the unobserved characteristic
µi that is subsumed in νi) the term ∑N

i=1 (z1i − z)∑N
i=1 (z1i − z) ·

(
Pi − P

)
is not independent of νi. We have thus learned an important property of the linear instrumental
variables estimator: it is not unbiased. We have heard instrumental variables estimators such as
two-stage least squares erroneously described as unbiased in casual discussions (e.g. at seminars)
so often that we re-iterate: the instrumental variables estimator is not unbiased.

Hope is not lost, however. Unbiasedness tells us, essentially, whether the estimator correctly
estimates the parameter (in this case true program impact β1) correctly on average. There is
still, however, the question of consistency. Consistency is basically concerned with whether, as
the sample size becomes increasingly large, the distribution of the estimator (i.e. the various
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values it can take on and their associated probabilities of occurring in any given sample) becomes
concentrated around the true parameter value (in this case, β1).

Consistency is typically considered with probability limits (which were introduced in Chapter
4). Probability limits have the convenient quality that

plim

(
A

B

)
=
plim (A)

plim (B)

Returning to the expression

β̂1 = β1 +

∑N
i=1 (z1i − z) · νi∑N

i=1 (z1i − z) ·
(
Pi − P

)
we have

plim
(
β̂1
)

= plim (β1) + plim

 ∑N
i=1 (z1i − z) · νi∑N

i=1 (z1i − z) ·
(
Pi − P

)


= β1 +
plim

(∑N
i=1 (z1i − z) · νi

)
plim

(∑N
i=1 (z1i − z) ·

(
Pi − P

))

= β1 +
plim

(∑N

i=1
(z1i−z)·νi
N

)
plim

(∑N

i=1
(z1i−z)·(Pi−P)

N

)
Notice that ∑N

i=1 (z1i − z) · νi
N

is simply the covariance between the instrument and the regression error term. However, since we
assume that the instrument and error term in the equation of interest are uncorrelated, this means
that the probability limit of the covariance is zero. Hence,

plim
(
β̂1
)

= β1 +
0

plim

(∑N

i=1
(z1i−z)·(Pi−P)

N

) = β1

In other words, the instrumental variables estimator may not be unbiased, but it is consistent.
A reasonable question at this point are the implications of these findings for actual empirical

practice. We have found that the instrumental variables estimator is not unbiased but is consistent.
Use of the estimator thus rests on the finding that it is consistent. Consistency is concerned with
the properties of an estimator as sample sizes become very large. There is absolutely no guarantee
about the performance of a consistent estimator with smaller sample sizes. Some (e.g. Angrist and
Krueger 2001) have as a result suggested caution when applying instrumental variables to smaller
sample sizes. This is sage advice.

At this point, it might be useful to pause and consider a numerical example of instrumental
variables estimation under this single instrument case. This example is captured in STATA do-file
6.1.do. The departure point is the following model of potential outcomes and cost of participation
for 10,000 individuals:

Y 1
i = 4 + 2 · x+ µ+ εYi
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Y 0
i = 2 + 2 · x+ µ+ εYi

Ci = 1 + 1.5 · x− .5 · z1 + .5 · z2 + µ+ εCi

where x and µ are independently normally distributed with mean 0 and variance 4 (i.e. x, µ ∼
N(0,4)), the εs are independently normally distributed with mean 0 and variance 9 (i.e. εs ∼ N(0,9))
and the instruments z1 and z2 are independently normally distributed with mean 0 and variance 4
(i.e. x, µ ∼ N(0,4). There is no real avenue for the endogeneity of either x or the instruments z.
The parameters of the simulation were, as always, more or less randomly chosen.

This is another example of constant program impact: Y 1
i − Y 0

i = 2. Thus, the cost equation
is determining the role that x and µ play in shaping the participation decision. The instruments
influence participation only through their role in cost: they have no independent role in determining
the outcome Y beyond their role in shaping participation. Moreover, by design the instruments are
independent of the error terms εC and, especially, εY .

Output 6.1 presents the distribution of participation. 58.13 percent participate in the program.
Once again, the numerical example involves a relatively popular program. We encourage the reader
to fiddle with the simulation code to explore circumstances of even more and far less popular
programs.

STATA Output 6.1 (6.1.do)

. * Basic summary statistics: participation

. tab P

P Freq. Percent Cum.

0 4,187 41.87 41.87
1 5,813 58.13 100.00

Total 10,000 100.00

In Output 6.2 we consider the means of key variables between participants and non-participants.
Participants are individuals with relatively low average values for Y 1 and for Y 0. Behind this
finding are differences in the average values of µ and x between the two groups. Specifically,
the cost of enrollment is increasing in x and µ. Thus participants should be individuals with
smaller values for x and µ. This implies that the participants should have lower values for Y ,
Y 1 and Y 0, other things being equal. Notice as well that the average values of the instruments
z1 and z2 differ between participants and non-participants which, if this was a real world sample,
would serve as prima facie evidence that these candidate instruments might be strong predictors
of program participation. Were this a real world example, at this phase we might refer to them as
candidate instruments because we would as yet have no indication whether they met the criteria
for instruments (particularly exclusion from the equation of interest and independence from the
errors), an issue which we might address with tests to be discussed in a subsequent subsection. On
the other hand, as we will see it is not always possible to test to see if an instrument is indeed
uncorrelated with the unobserved determinants of the outcome. In practice, the justification for
an instrument often rests on theoretical behavioral arguments (i.e. why the candidate instrument
should behaviorally influence participation but otherwise be unrelated to the outcome) rather than
an empirical test.

In Output 6.3 we consider the correlations among key covariates. Note that program partici-
pation P is highly correlated with the unobservable µ but not with ε. Thus program participation
is an endogenous variable in a regression of Y on P and x, and for exactly the reasons that the
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simulation design intended to engineer. Crucially, the instruments appear essentially uncorrelated
with the unobservables µ, εY and εC . They thus appear to meet the exogeneity requirement of an
instrument (namely that an instrument not be correlated with the regression error in the equation
of interest). The only reason we can assess this in this fashion is that this is a simulated example
and hence we can “see” the errors. In the real-world analog to this sample, we would observe only
{Y, P, x, z1, z2}.

STATA Output 6.2 (6.1.do)

. * Basic summary statistics: variable means

.

. by P, sort: summarize Y y1 y0 c x* z* mu epsilon*

-> P = 0

Variable Obs Mean Std. Dev. Min Max

Y 4187 4.977852 4.644148 -10.74594 22.10318
y1 4187 6.977852 4.644148 -8.745936 24.10318
y0 4187 4.977852 4.644148 -10.74594 22.10318
c 4187 5.575921 2.770066 2.002451 19.11571

x0 4187 1 0 1 1

x 4187 1.130789 1.721677 -5.620321 7.176875
z1 4187 -.3372715 1.952999 -8.078415 6.060055
z2 4187 .383663 1.959136 -6.330251 6.769236
mu 4187 .7467416 1.903202 -5.616416 7.12235

epsilony 4187 -.0304688 2.972894 -10.58663 10.57696

epsilonc 4187 1.772528 2.597622 -7.321414 11.07838

-> P = 1

Variable Obs Mean Std. Dev. Min Max

Y 5813 1.748017 4.738986 -14.47957 20.4715
y1 5813 1.748017 4.738986 -14.47957 20.4715
y0 5813 -.2519832 4.738986 -16.47957 18.4715
c 5813 -2.267171 3.135526 -17.07104 1.997842

x0 5813 1 0 1 1

x 5813 -.829659 1.772296 -8.141914 4.701032
z1 5813 .2619722 1.990245 -7.180359 8.420812
z2 5813 -.3029925 1.965626 -6.960695 6.588125
mu 5813 -.5577272 1.92052 -7.726572 7.586161

epsilony 5813 -.034938 2.950077 -10.366 12.81559

epsilonc 5813 -1.182473 2.631718 -11.73894 8.629721

In Output 6.4 we present the results of the obligatory attempt at simple regression of Y on P
and x. Given that true program impact is 2, the regression results represent a huge underestimate
of true program impact at .263087 (only around 13 percent of true impact). There is a simple
and (what should be at this point) familiar explanation for this: program participation P is an
endogenous regressor. Specifically, it is correlated with µ in the error term. Straightforward impact
evaluation methods that ignore the possibility of endogeneity like this simple regression are thus
unlikely to yield unbiased or consistent estimates of program impact.

We next turn to instrumental variables, relying on just one of the two instruments, z1. We do
this randomly and without loss of generality (in other words, we could just as easily have used z2
for our illustration of the one instrument case). We start with “manual” two-stage least squares,
whereby we perform the first stage regression of P on x and z1, then use the estimates to predict
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program participation and then perform the second stage regression of the outcome Y on predicted
program participation and x. In Output 6.5 we present results from the “first stage” of this
process, the regression of P on x and z1. Notice that z1 is a highly significant predictor of program
participation. We want an instrument to be a highly significant predictor of the endogenous variable
(in this case program participation P ) and, at the end of this subsection, we will briefly discuss
how critical this really can be. Following the regression estimation, we use the “fitted” model (i.e.
the estimated model from this first stage regression) to predict program participation Phat.

STATA Output 6.3 (6.1.do)

. * Correlations among unobservables

.

. corr P z* mu epsilony epsilonc
(obs=10000)

P z1 z2 mu epsilony epsilonc

P 1.0000
z1 0.1481 1.0000
z2 -0.1701 -0.0034 1.0000
mu -0.3188 -0.0001 0.0155 1.0000

epsilony -0.0007 0.0090 -0.0083 0.0065 1.0000
epsilonc -0.4866 0.0071 0.0078 -0.0092 -0.0041 1.0000

STATA Output 6.4 (6.1.do)

. * Cross sectional regression

. reg Y P x

Source SS df MS Number of obs = 10000
F( 2, 9997) = 4968.55

Model 122730.14 2 61365.0699 Prob > F = 0.0000
Residual 123469.862 9997 12.3506914 R-squared = 0.4985

Adj R-squared = 0.4984
Total 246200.001 9999 24.6224624 Root MSE = 3.5144

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .263087 .0813785 3.23 0.001 .1035687 .4226052
x 1.781695 .0200693 88.78 0.000 1.742355 1.821035

_cons 2.963129 .0588625 50.34 0.000 2.847747 3.078512

Output 6.6 presents the second stage of the “manual” two-stage least squares process. The
estimate of program impact is the coefficient on the predicted program participation, Phat. At
2.361004 this estimate of program impact is far closer to the true value of 2 than the naive regression
estimate of .263087.

We now briefly digress to consider the consequences of small sample sizes and (from the “glass
half full” perspective) the advantages of large sample sizes when conducting instrumental variables
estimation. In Outputs 6.7 and 6.8 we report second stage regression results after repeating the
manual two-stage least squares, but in this case with sample sizes of 150 and 500, respectively.
Neither of these sample sizes are unheard of in applied micro-level empirical work. However, in
both cases it is clear that the two-stage least squares estimator is not performing particularly
well, providing estimates well short of mark in terms of true program impact of 2. Indeed, at 150
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observations (a sample size not unheard of for, for instance, multiple regression or within estimators,
with decent results in some cases) the estimate of program impact is only around half of the true
value.

STATA Output 6.5 (6.1.do)

. * First stage of ``manual´´ two-stage least squares,

. * single instrument case

.

. reg P x z1

Source SS df MS Number of obs = 10000
F( 2, 9997) = 1718.26

Model 622.633312 2 311.316656 Prob > F = 0.0000
Residual 1811.26979 9997 .181181333 R-squared = 0.2558

Adj R-squared = 0.2557
Total 2433.9031 9999 .243414651 Root MSE = .42565

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.1192699 .0021278 -56.05 0.000 -.1234408 -.115099
z1 .0367036 .002132 17.22 0.000 .0325245 .0408826

_cons .5798419 .0042566 136.22 0.000 .571498 .5881857

.

. predict Phat
(option xb assumed; fitted values)

STATA Output 6.6 (6.1.do)

. * Second stage of ``manual´´ two-stage least squares,

. * single instrument case

.

. reg Y Phat x

Source SS df MS Number of obs = 10000
F( 2, 9997) = 4982.32

Model 122900.4 2 61450.1998 Prob > F = 0.0000
Residual 123299.602 9997 12.3336603 R-squared = 0.4992

Adj R-squared = 0.4991
Total 246200.001 9999 24.6224624 Root MSE = 3.5119

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Phat 2.361004 .4792454 4.93 0.000 1.421587 3.300422
x 2.03184 .0597786 33.99 0.000 1.914662 2.149018

_cons 1.745816 .2802903 6.23 0.000 1.196391 2.295242

Some of this probably simply reflects higher ordinary sampling variation associated with smaller
sample size. However, there is reason to be skeptical of the idea that this explains all of the discrep-
ancy between the results in, say, Outputs 6.6 and 6.7. As we move from the 10,0000 observation case
in Output 6.6 to the 150 observation case in 6.7, standard errors for all parameter estimates widen.
However, the degree of increase is much greater for predicted program participation Phat than x.
Some of this uneven pattern of increase to the relative standard errors of P and x might reflect very
imprecise estimates of the relationship between program participation P and the instrument z1 due
to the small sample size. This could lead to a very noisy predicted program participation. While
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this is probably generally a factor at smaller sample sizes it might not be the only explanation. For
instance, in Output 6.9 we re-ran the model with 10,000 observations for the first stage regression
(of P on x and z1), thus restoring much of the lost precision to the first-stage estimate, but only
150 observations for the second stage. The estimated program is actually even more wide of the
mark at -.7863779, and the absolute size of the standard error of P is actually larger in Output 6.9
than in Output 6.7. This suggests that first stage precision isn’t everything where the performance
of two-stage least squares is concerned.

Figure 6.3: TSLS Performance

In general, the poor performance of the two-stage least squares estimator at the smaller sample
sizes likely reflects to an extent the admonition to be careful about the distinction between unbi-
asedness (which does not depend on sample size) and consistency (a property that, when it obtains,
does so only at larger sample sizes). It is riskier (from the standpoint of obtaining highly mislead-
ing program impact estimates) to rely on impact estimates from two-stage least squares estimation
with small sample sizes. In Figure 6.3 we illustrate the performance of the two-stage least squares
estimator applied to this example as sample size increases. Specifically, we re-ran the model at
different sample sizes ranging from 100 to 150,000 observations in increments of 100 observations.
For each sample size, we calculated the absolute value of the difference between the impact estimate
under two-stage least squares for that sample size and the true value of 2. Using STATA’s lowess
command, we then performed locally weighted regression of the absolute value of the deviations
of the estimates from 2 on the number of observations. Locally weighted regression is beyond the
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scope of this manual, but you can usefully (for present purposes) view it as an extremely flexible
way of looking at how the central tendency of the absolute deviation of estimated program impact
from the truth varies as sample size changes.

Figure 6.3 illustrates the evolution of that central tendency as sample size increases. It is
plain from the pattern of the central tendency (per the “predicted” central tendency from local
regression of the absolute deviation of the program impact estimate from the truth on the number
of observations) that, in general, the two-stage least squares estimator performs increasingly well
as sample size increases. Indeed, by 150,000 observations the predicted absolute deviation of the
program impact estimate is less than 5 percent of the true value of that estimate. On the other
hand, the predicted absolute deviation remains quite high at sample sizes in ranges seen quite
frequently in empirical work (e.g. around 20,000 observations).

To be sure, some of this simply reflects the benefits of lower sampling variation from larger
sample sizes in any sort of impact evaluation model. However, to get some sense of how plausible
that is, in Figure 6.4 we add to Figure 6.3, comparing the performance of our basic two-stage least
squares estimator to that of the “correct” program impact least squares regression estimator (i.e.
least squares regression of the outcome Y on program participation P , the observed characteristic x
and the unobserved characteristic µ) as sample size increases. We focus on this regression because
it provides an unbiased and consistent estimate of program impact. Hence, any improvement in it
in terms of the predicted absolute deviation of its estimate of program impact from the true value

Figure 6.4: TSLS Performance versus “Correct” OLS
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of 2 as sample size increases must be due solely to precision gains (i.e. reduced sampling variation).

STATA Output 6.7 (6.1.do)

. * Second stage of ``manual´´ two-stage least squares,

. * single instrument case

.

. reg Y Phat x

Source SS df MS Number of obs = 150
F( 2, 147) = 61.38

Model 1598.83911 2 799.419555 Prob > F = 0.0000
Residual 1914.4531 147 13.0234905 R-squared = 0.4551

Adj R-squared = 0.4477
Total 3513.29221 149 23.5791424 Root MSE = 3.6088

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Phat 1.016743 3.202113 0.32 0.751 -5.311381 7.344866
x 1.777144 .3959087 4.49 0.000 .9947358 2.559552

_cons 2.753803 2.024577 1.36 0.176 -1.247234 6.754841

STATA Output 6.8 (6.1.do)

. * Second stage of ``manual´´ two-stage least squares,

. * single instrument case

.

. reg Y Phat x

Source SS df MS Number of obs = 500
F( 2, 497) = 242.90

Model 6096.17393 2 3048.08697 Prob > F = 0.0000
Residual 6236.60312 497 12.5484972 R-squared = 0.4943

Adj R-squared = 0.4923
Total 12332.777 499 24.7149841 Root MSE = 3.5424

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Phat 1.433846 2.758165 0.52 0.603 -3.985255 6.852948
x 1.897721 .3344124 5.67 0.000 1.240684 2.554757

_cons 2.033478 1.577156 1.29 0.198 -1.065236 5.132192

It is evident that, in terms of predicted absolute deviation of the program impact estimate from
the true value of 2 the regression estimator performs better than two-stage least squares at every
sample size. Moreover, the overall improvement in the performance of the two-stage least squares
estimator is much greater at smaller sample sizes and still noticeably great at the absurdly large
sample size (at least for this example) of, say, 120,000. This is likely indicative of something more
going on with the two-stage least squares estimator than just reduction in sampling variation as
sample size grows. Whatever the case, however, this comparison reflects the basic wisdom that
one should exercise caution when applying the two-stage least squares estimator to smaller sample
sizes.

In Output 6.10 we present two-stage least squares estimates using STATA’s built-in two-stage
least squares package (which is implemented through the STATA command ivregress). It is
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generally better practice to use the two-stage least squares routine that comes with your preferred
commercial statistical software than to engage in the manual estimation of two-stage least squares
along the lines reported in Outputs 6.5 and 6.6, for reasons that will shortly become clear. With the
“first” option we have elected to have the output display the first stage results. Notice that the
“First-stage regressions” results are identical to those in Output 6.5: there is generally
no difference in results between the manual approach to two-stage least squares (i.e. estimate the
first stage as an ordinary regression, predict program participation and then estimate the second
stage as an ordinary, stand-alone regression) and a commercial two-stage least squares package for
the first stage regression of program participation P on x and z1.

STATA Output 6.9 (6.1.do)

. * Second stage of ``manual´´ two-stage least squares,

. * single instrument case

.

. reg Y Phat x if _n<151

Source SS df MS Number of obs = 150
F( 2, 147) = 56.92

Model 1581.12731 2 790.563657 Prob > F = 0.0000
Residual 2041.67345 147 13.888935 R-squared = 0.4364

Adj R-squared = 0.4288
Total 3622.80076 149 24.3140991 Root MSE = 3.7268

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Phat -.7863779 4.320652 -0.18 0.856 -9.324994 7.752238
x 1.829088 .5175141 3.53 0.001 .8063595 2.851817

_cons 3.228184 2.473724 1.30 0.194 -1.660472 8.11684

The difference in the two approaches emerges at the second stage. In Output 6.6, the program
impact estimate from manual second stage estimation was 2.361004, with a standard error of
.4792454. In Output 6.10 the second stage estimate of program impact is the same, but the
estimated standard error of that estimate is larger, at .4951864. This reflects the fact that the
second stage standard errors from manual estimation are somewhat naive in that they assume
that the second stage is simply a stand alone regression and not part of a multi-stage estimation
process. In particular, the manual second stage estimates of the standard error of the program
impact estimate do not recognize that there will be some sampling variation in the program impact
estimate because there is some sampling variation in first stage estimates and hence in predicted
program participation. Prepared routines such as STATA’s ivregress command use correct
standard error formulas that take account of this sampling variation emanating from the first stage
regression. Although the difference in standard errors was modest in this example, in some cases
it can be much larger.

Up to this point we have examined the instrumental variables estimator in terms of just one in-
strument. However, the model at the beginning of the chapter presented two potential instruments,
z1i and z2i. We now consider estimation with more than one instrument.

To begin with, we pick up where the earlier discussion of instrumental variables and method of
moments ended. In that discussion, there were two moment conditions

N∑
i=1

(
Yi − β̂0 − β̂1 · Pi

)
= 0
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N∑
i=1

z1i ·
(
Yi − β̂0 − β̂1 · Pi

)
= 0

We return the regressor xi to the model (i.e. we no longer assume that β2 = 0), resulting in the
slightly modified moment conditions

N∑
i=1

(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
= 0

N∑
i=1

z1i ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
= 0

The addition of a new parameter to be estimated does not result in an under-identified (i.e. more
parameters to be estimated than moment conditions) because the introduction of method of mo-
ments (when the method of moments was applied to a simple regression model) suggests a new
moment condition associated with the regressor xi:

N∑
i=1

xi ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
= 0

We thus have three moment conditions and three parameters to estimate. In other words, we have
exact identification.

Adding a new instrument, however, creates identification problems. Extending the logic of our
last discussion of instrumental variables and the method of moments, adding the second instrument
z2i creates a new moment condition:

N∑
i=1

z2i ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
= 0

We thus now have four moment conditions:

N∑
i=1

(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
= 0

N∑
i=1

z1i ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
= 0

N∑
i=1

xi ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
= 0

N∑
i=1

z2i ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
= 0

but only three parameters to estimate: β0, β1 and β2. In other words, we have four equations, and
three unknowns (β̂0, β̂1 and β̂2). This is thus a case of over-identification. The problem is that we
cannot find a set of estimates β̂0, β̂1 and β̂2 at which the moment conditions hold exactly.

However, we can find those estimates at which the conditions come as close to holding as
possible. This is the objective of a generalization of the method of moments known, unsurprisingly,
as the generalized method of moments.
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For notational simplicity, let us rename the moments as follows:

g1 =
N∑
i=1

(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)

g2 =
N∑
i=1

z1i ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)

g3 =
N∑
i=1

xi ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)

g4 =
N∑
i=1

z2i ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
Notice that we have dropped the “= 0” part of these moment conditions: we had already concluded
that the moment conditions (i.e. that each moment equals 0) could not be made to hold exactly
anyway.

STATA Output 6.10 (6.1.do)

. * Two stage least squares: STATA command

.

. ivregress 2sls Y x (P=x z1), first

First-stage regressions

Number of obs = 10000
F( 2, 9997) = 1718.26
Prob > F = 0.0000
R-squared = 0.2558
Adj R-squared = 0.2557
Root MSE = 0.4257

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.1192699 .0021278 -56.05 0.000 -.1234408 -.115099
z1 .0367036 .002132 17.22 0.000 .0325245 .0408826

_cons .5798419 .0042566 136.22 0.000 .571498 .5881857

Instrumental variables (2SLS) regression Number of obs = 10000
Wald chi2(2) = 9333.40
Prob > chi2 = 0.0000
R-squared = 0.4652
Root MSE = 3.6287

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P 2.361004 .4951864 4.77 0.000 1.390457 3.331552
x 2.03184 .061767 32.90 0.000 1.910779 2.152901

_cons 1.745816 .2896135 6.03 0.000 1.178184 2.313448

Instrumented: P
Instruments: x z1
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These can be assembled into a vector of moments:
g1
g2
g3
g4


The generalized method of moments seek estimates β̂0, β̂1 and β̂2 that essentially minimize a norm
of this vector. In particular, it seeks the estimates β̂0, β̂1 and β̂2 that minimize9

[
g1 g2 g3 g4

] 
g1
g2
g3
g4

 = (g1)
2 + (g2)

2 + (g3)
2 + (g4)

2

Notice that the closer each of the moments gj (for j = 1, ...4) is to zero, the smaller will be this
quantity. Thus, while the generalized method of moments cannot achieve estimates that make
the moment conditions gj = 0 hold exactly (which would not be possible given the over-identified
nature of the system of moment conditions is over-identified) it finds the estimates that get the
moments to be collectively as close to zero as possible.

In practice, generalized method of moments estimators seek to minimize weighted moment
conditions. To get some idea how this might work, consider the very simple weighting matrix

w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4


where the ws are weights to apply to the moment conditions. Generalized method of moments
might seek estimates β̂0, β̂1 and β̂2 that minimize10

[
g1 g2 g3 g4

] 
w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4



g1
g2
g3
g4


9The expression

[
g1 g2 g3 g4

] g1
g2
g3
g4


shows a matrix operation known as matrix multiplication. It is more important that the reader recognizes the function

(g1)2 + (g2)2 + (g3)2 + (g4)2

that is the result of that matrix multiplication, and for which the generalized methods of moments seeks estimates
to minimize its value, than it is to necessarily understand matrix operations. We define the matrix operation simply
for the benefit of the interested reader.

10The expression

[
g1 g2 g3 g4

] w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4


 g1
g2
g3
g4


simply shows a more complex matrix operation.
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= w1 · (g1)2 + w2 · (g2)2 + w3 · (g3)2 + w4 · (g4)2

With the addition of weights, each moment no longer counts equally for the minimization problem.
The result of adding a weighting matrix is usually considerably messier (in appearance) but this
simple exercise gives the reader some intuitive idea of what the weights are doing in essence.

In practice the generalized method of moments estimators use more complex weighting ma-
trices, the development and discussion of which is beyond the scope of this manual. As a gross
generalization, the weighting matrices used in generalized method of moments estimation tend to
give more weight to moments with lower variance which, intuitively, means that they give more
weight to moments about which we have more information. The weighting matrix can be imposed
by the researcher or, more often (and preferably), determined by the data.

STATA Output 6.11 (6.1.do)

. * First stage of ``manual´´ two-stage least squares,

. * two instrument (over-identified) case

.

. reg P x z1 z2

Source SS df MS Number of obs = 10000
F( 3, 9996) = 1333.14

Model 695.526508 3 231.842169 Prob > F = 0.0000
Residual 1738.37659 9996 .173907222 R-squared = 0.2858

Adj R-squared = 0.2856
Total 2433.9031 9999 .243414651 Root MSE = .41702

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.119577 .0020847 -57.36 0.000 -.1236635 -.1154906
z1 .0365565 .0020887 17.50 0.000 .0324622 .0406508
z2 -.0428673 .0020938 -20.47 0.000 -.0469716 -.0387629

_cons .5791768 .0041704 138.88 0.000 .5710019 .5873517

.

. predict Phat
(option xb assumed; fitted values)

We highly recommend that generalized method of moments estimation be performed with com-
mercial statistical programs that offer generalized method of moments estimation as part of their
package. STATA is one example of such a program. The generalized method of moments is the
subject of a vast literature offering many insights into best practice, and so it might be most effi-
cient for the reader simply to utilize the pre-prepared generalized method of moments routines in
many statistical packages.

At this point the reader would be justified in asking why we have taken these detours into the
worlds of the method of moments and the generalized method of moments. After all, we could
simply have stuck with two-stage least squares (as an earlier footnote made clear, even the formula
for the basic single instrument instrumental variables estimator could be derived directly from
two-stage least squares estimation).

There are at least two reasons we discuss moment-based methods. First, they are an extremely
popular platform for methodological thinking about instrumental variables, and are frequently
employed in empirical applications of instrumental variables. To not discuss them would thus leave
an important door closed to the reader. Second, one of the most popular tests of instruments,
which we will discuss below, emerges from the moment-based methods.

We now turn our attention to an empirical example involving over-identification. To do so,
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we simply continue our simulated empirical example from earlier in this subsection, but now use
both instruments, z1 and z2, as predictors of program participation. Results for the first stage
estimation of two-stage least squares via the “manual” approach are presented in Output 6.11. We
now include the additional instrument z2. Notice that the predictive power of the model in terms
of R2 has improved somewhat from the figure of .2558 in Output 6.5 to .2858 in Output 6.11. This
is one indication that predicted participation based on the fitted first stage model might now be a
bit less noisy.

Output 6.12 presents the results from the second stage of estimation under the manual approach.
The estimate of program impact is now a bit closer to the truth than in Output 6.6 (2.361004 in
Output 6.6 against 2.108621 below in Output 6.12). The standard error of the program impact
estimate has fallen dramatically (around 35 percent from the Output 6.6 estimate of .4792454 to
.3117998 in Output 6.12). This would seem to present fairly convincing evidence for improved
precision from the inclusion of an additional instrument in the first stage.

STATA Output 6.12 (6.1.do)

. * Second stage of ``manual´´ two-stage least squares,

. * two instrument (over-identified) case

.

. reg Y Phat x

Source SS df MS Number of obs = 10000
F( 2, 9997) = 5003.69

Model 123163.926 2 61581.9631 Prob > F = 0.0000
Residual 123036.075 9997 12.3072997 R-squared = 0.5003

Adj R-squared = 0.5002
Total 246200.001 9999 24.6224624 Root MSE = 3.5082

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Phat 2.108621 .3117998 6.76 0.000 1.49743 2.719811
x 2.001747 .0411059 48.70 0.000 1.921171 2.082323

_cons 1.892261 .1842913 10.27 0.000 1.531013 2.253509

A skeptic might simply wonder, however, whether this difference just reflects random noise.
After all, the results of a given estimation exercise in terms of estimates of program impact and of
the standard error of that estimate nearly always vary across repeated samples of the same size.
It is thus fair to ask whether there really is a systematic gain from over-identification above exact
identification (or, more generally, whether there is a gain from more instruments).

To try to get some sense of this, in Figure 6.5 we present results for local regression of predicted
absolute deviation of the program impact estimate from the true value of 2 on sample size for the
just-identified (i.e. using just z1 as an instrument) and over-identified models (i.e. using both z1
and z2 as instruments). It is clear from the figure that there is indeed a persistent performance
advantage in the over-identified case.

In Output 6.13 we present the results from this over-identified case using STATA’s two-stage
least squares package. The results mirror what was observed in the single instrument case in terms
of patterns between manual two-stage least squares estimation and estimation with the ivregress
command. Namely, first stage results are identical while second stage estimated standard errors
are larger with the purpose-built two-stage least squares package.

In Output 6.14 we report results from re-estimation of the over-identified model with ivregress,
but this time using the gmm option rather than the 2sls. The 2sls option prompts ivregress
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to perform two-stage least squares estimation, while the gmm option instead directs it toward gen-
eralized method of moments estimation. The results from Outputs 6.13 and 6.14 are very similar,
with the possible exception that the estimates of the standard errors for the various parameter
estimates (“first” and “second” stage) in 6.14 are a bit larger. This reflects the fact that the gener-
alized method of moments implementation in ivregress by default pursues a weighting matrix
designed to address possibly homoskedastic errors.

The interesting thing about generalized method of moments is that in principle it opens the door
to the researcher adding all sorts of moments that they feel are appropriate. Whether, beyond a
certain point, it is wise to do so is a separate issue (various published and unpublished work suggests
that the excessive addition of moments can significantly degrade the performance of the generalized
method of moments estimator). Nonetheless, in Output 6.15 the authors demonstrate how to
“manually” perform generalized method of moments estimation in STATA. First, the moment (or
at least that part of it motivated by a residual) is constructed and then applied to STATA’s gmm
estimator, with separate specification of instruments.

Econometrics can be a somewhat semantically sloppy discipline (e.g. there are many potential
meanings to the word “structural” in econometrics). The terminology implied by STATA’s gmm
command is one popular approach in the generalized method of moments tradition. Specifically, in

Figure 6.5: TSLS Performance, Over-Identification
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this instance the “moment” is simply the residual condition(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
while the “instruments” are all of the exogenous variables (z1, z2 and x).

STATA Output 6.13 (6.1.do)

. * Two stage least squares: STATA command

.

. ivregress 2sls Y x (P=x z1 z2), first

First-stage regressions

Number of obs = 10000
F( 3, 9996) = 1333.14
Prob > F = 0.0000
R-squared = 0.2858
Adj R-squared = 0.2856
Root MSE = 0.4170

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.119577 .0020847 -57.36 0.000 -.1236635 -.1154906
z1 .0365565 .0020887 17.50 0.000 .0324622 .0406508
z2 -.0428673 .0020938 -20.47 0.000 -.0469716 -.0387629

_cons .5791768 .0041704 138.88 0.000 .5710019 .5873517

Instrumental variables (2SLS) regression Number of obs = 10000
Wald chi2(2) = 9487.14
Prob > chi2 = 0.0000
R-squared = 0.4727
Root MSE = 3.6031

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P 2.108621 .3202348 6.58 0.000 1.480972 2.736269
x 2.001747 .042218 47.41 0.000 1.919001 2.084493

_cons 1.892261 .1892769 10.00 0.000 1.521285 2.263237

Instrumented: P
Instruments: x z1 z2

We conclude with a brief discussion of the final criteria an instrument must meet, one that
we have not discussed thus far: the instrument must have some ability to predict the value of
the endogenous variable, in this instance program participation. For a long time, it was not
unusual in empirical work to see instrumental variables applications with instruments that were
only marginally significant as first-stage predictors of the endogenous variables (in some instances
they were not significant at all!).

This pattern of practice eventually provoked scrutiny in the form of a series of famous papers
(e.g. Staiger and Stock 1997, Bound et al. 1995, etc.) examining the performance of instrumental
variables estimators (particularly two-stage least squares) with “weak” instruments. There are a
lot of interesting facets to this work, but the findings can be succinctly summarized as follows:
with weak instruments instrumental variables performs poorly. If the instruments are weak enough
(as evidenced by very low first stage statistical significance to the estimates of the effect of the
instruments on the endogenous variable) the performance of instrumental variables could be quite
appalling.
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We illustrate this with another local regression exercise, the results of which are presented
in Figure 6.6. This time, we compare the predicted absolute deviation of the program impact
estimate from local regression of the absolute deviation on sample size using our original example
of manual estimation of two-stage least squares with a single instrument but with a modification
to generate a “weak” instrument. The weak instrument case is generated simply multiplying the
original coefficient on z1 by 1/10, resulting in the new cost of participation function

Ci = 1 + 1.5 · x− .05 · z1 + .5 · z2 + µ+ εCi

Notice that the coefficient on z1 is now .05, instead of .5. We have thus reduced drastically the
explanatory power of z1 in terms of program participation. To illustrate, in Output 6.16 we present
the first stage equation results with this adjustment. As you can see, the t-statistic of the estimate
for z1 has plunged to 1.45( from 17.22 in Output 6.5): it is no longer a statistically significant
predictor of program participation. The second stage estimate of program impact (not reported)
is now 6.254036, which is wildly different from the true value of 2.

From Figure 6.6 we can see that across sample sizes the effect of this adjustment in the first
stage explanatory power of z1 has been devastating: the performance of the just-identified two-
stage least squares is now terrible at smaller sample sizes (with a predicted absolute deviation of the
program impact from the truth on the order of seven to eight times the true value of 2). However,
the situation only improves to a point as the sample size increases to the extremely generous size

Figure 6.6: TSLS Performance, Weak Instruments
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of 150,000: at a sample size of 150,000 the predicted absolute deviation of the program impact
estimate is 0.871217, around ten times the figure of 0.089567 for the original model at 150,000
observations and larger than the predicted absolute deviation of 0.628647 for the original model at
100 observations.

STATA Output 6.14 (6.1.do)

. * Two stage least squares: STATA command

.

. ivregress gmm Y x (P=x z1 z2), first

First-stage regressions

Number of obs = 10000
F( 3, 9996) = 2308.62
Prob > F = 0.0000
R-squared = 0.2858
Adj R-squared = 0.2856
Root MSE = 0.4170

Robust
P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.119577 .0016949 -70.55 0.000 -.1228994 -.1162547
z1 .0365565 .0020593 17.75 0.000 .0325199 .0405931
z2 -.0428673 .0020369 -21.05 0.000 -.04686 -.0388746

_cons .5791768 .0041754 138.71 0.000 .5709922 .5873614

Instrumental variables (GMM) regression Number of obs = 10000
Wald chi2(2) = 9351.62
Prob > chi2 = 0.0000
R-squared = 0.4727

GMM weight matrix: Robust Root MSE = 3.6031

Robust
Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P 2.108944 .324678 6.50 0.000 1.472587 2.745301
x 2.001951 .0430581 46.49 0.000 1.917559 2.086344

_cons 1.893205 .1920943 9.86 0.000 1.516708 2.269703

Instrumented: P
Instruments: x z1 z2

Interestingly, the local predicted absolute deviation of the program impact estimate from the
true value of 2 for simple regression of the outcome Y on program participation P and the observed
characteristic x (in other words, straightforward regression ignoring the potential endogeneity of
P ) is fairly steady at around 1.7, falling only incrementally as sample size increases. It is not until
around 60,000 observations that the predicted absolute deviation for the weak instrument case
falls below this threshold. In other words, unless one has a fairly substantial sample size, it might
be better to ignore endogeneity altogether than attempt to address it with instrumental variables
estimation with weak instruments. Bartels (1991) actually found that under some (admittedly
extreme) circumstances a strong instrument (in terms of first stage ability to predict program
participation) correlated with the error term of the equation of interest (i.e. µ or εY in our model)
might provide more useful estimates of program impact than a weak instrument uncorrelated with
the error term. In other words, he found that it is possible that an instrument that violates perhaps
the most important theoretical standard for an instrument could be better than a weak instrument.



6.1. INSTRUMENTAL VARIABLES BASICS 233

The most convincing gauge of instrument strength is significance of first stage estimated in-
strument coefficients, either for single instruments (as manifested by t-statistics and corresponding
p-values) or, in the over-identified case, for the instruments collectively (as manifested by the F-
statistic11 from a joint test of the instruments). How much significance is enough remains something
of an open question at this point, though some progress has been made. For instance, Staiger and
Stock (1997) and Stock and Yogo (2005) essentially suggest a “weak” instrument threshold of an
F-statistic value of less 10 for the joint first-stage significance of the instruments.

STATA Output 6.15 (6.1.do)

. * GMM manual setup

.

. global XB "{b0}"

. global XB "$XB - {b1}*P"

. global XB "$XB - {b2}*x"

.

. gmm (Y-$XB), instruments(x z1 z2) vce(r)

Step 1
Iteration 0: GMM criterion Q(b) = 21.929148
Iteration 1: GMM criterion Q(b) = .00059405
Iteration 2: GMM criterion Q(b) = .00059405

Step 2
Iteration 0: GMM criterion Q(b) = .00004626
Iteration 1: GMM criterion Q(b) = .00004615
Iteration 2: GMM criterion Q(b) = .00004615

GMM estimation

Number of parameters = 3
Number of moments = 4
Initial weight matrix: Unadjusted Number of obs = 10000
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b0 1.893205 .1920943 9.86 0.000 1.516708 2.269703
/b1 2.108944 .324678 6.50 0.000 1.472587 2.745301
/b2 2.001951 .0430581 46.49 0.000 1.917559 2.086344

Instruments for equation 1: x z1 z2 _cons

11See the Tool Box on The F-Distribution.
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Tool Box: The F-Distribution

Like the normal, Student’s t and χ2 distributions, the F-distribution is a very popular
workhorse distribution for hypothesis testing in program impact evaluation and regression
analysis more generally. The F-distribution tends to be a “Go To” distribution for hypothesis
testing involving linear combinations of estimated parameters from linear regression models.
Formally, if w1 and w2 are χ2 distributed random variables with degrees of freedom M and
N , respectively, then the distribution of

Q =
w1
M
w2
N

is given by the F-distribution with M and N degrees of freedom, which is usually denoted
FM,N . The F-distribution would be a natural choice for, for instance, testing the joint sig-
nificance of the instruments as determinants of program participation per a linear regression
model of program participation.

STATA Output 6.16 (6.1.do)

. * First stage of ``manual´´ two-stage least squares,

. * single instrument case

.

. reg P x z1

Source SS df MS Number of obs = 10000
F( 2, 9997) = 1610.81

Model 592.466433 2 296.233216 Prob > F = 0.0000
Residual 1838.47747 9997 .183902918 R-squared = 0.2437

Adj R-squared = 0.2436
Total 2430.9439 9999 .243118702 Root MSE = .42884

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.121639 .0021437 -56.74 0.000 -.1258411 -.1174368
z1 .0031147 .0021479 1.45 0.147 -.0010956 .007325

_cons .5819928 .0042885 135.71 0.000 .5735864 .5903991

6.1.2 Limited Dependent Variables

The last subsection was concerned mainly with instrumental variables methods most obviously
applicable to a linear setting, wherein the outcome of interest Y and the endogenous variable,
program participation P in this manual, are treated as continuous variables for estimation pur-
poses. Whether one pursued two-stage least squares or moment-based estimation, the underlying
regression models, which serve as the basis for the first and second stage estimation models under
two-stage least squares and provide the basis for the moments in the moment-based approaches,
were linear in nature.

Clearly, observed program participation as it is typically conceptualized in this manual, and
was in the last subsection, actually isn’t continuous: it is a binary variable that takes on a value of
1 if the individual participates and 0 if they do not do so. In other words, in the past section, we
essentially pretended that observed program participation was a continuous variable for estimation
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purposes when it actually was not in the context of the behavioral model of the last subsection.
Nor is it typically treated as continuous in real world evaluations: in many, if not most, impact
evaluations it is conceptualized as a limited dependent variable that can take on a discrete, finite
number of possible values.

In the last subsection we also assumed that the observed outcome of interest was continuous.
Sometimes, however, outcomes of interest for which we wish to estimate program impact are in
fact limited dependent in nature. In this subsection we discuss instrumental variable models that
explicitly recognize the possibility that the outcome, program participation or both are limited
dependent variables (in other words, not continuous).

In doing so we enter into a discussion on a topic that is in some sense far more wide ranging and
diverse than that associated with linear instrumental variables. There have been many instrumental
variables models purpose-built for various circumstances where either the outcome, endogenous
variable (in our case program participation) or both are limited dependent in nature. Just these
three permutations suggest three distinct modelling circumstances.

There are also all sorts of ways that a dependent variable can be “limited”. Typically it is
discrete in nature, in which case it could be binary (e.g. participate versus don’t participate
for program participation; use contraception or do not do so for the outcome), multinomial (e.g.
choose from several participation alternatives for the participation variable; utilize any of several
alternative health care providers for the outcome) or a count variable (e.g. number of times the
individual participated or was “treated”, suggesting a dose-response approach to the participation
variable; the number of doctor or clinic visits, or number of children born to a woman, as outcome
possibilities). Frankly, the possibilities do not end there either.

Just these possibilities for the nature of the limited dependent variables suggest 3X3=9 possible
combinations of modelling challenges when both the outcome of interest and program participation
are explicitly treated as limited dependent in nature. When one considers that one of the two
dependent variables could be continuous, that adds 2X3=6 permutations, for a total of 15 potential
modelling circumstances from just this short enumeration of possibilities!

Clearly, this would make for a lengthy discussion of instrumental variables models for limited
dependent variables: assuming 3 pages of discussion per possibility (which is conservative) it quickly
becomes a mathematically dense and frankly tedious (for the reader and the authors) 45 page
journey of uncertain benefit anyway (since it still would not cover every conceivable possibility, but
just those briefly enumerated in the past two paragraphs). We therefore discuss just a few models.
However, we do so in a manner designed to give the reader some overall feel for typical approaches
used for instrumental variables in the limited dependent variable setting as well as a sense of some
of the cross-cutting issues associated with those approaches.

We begin by outlining three possible general cases for limited dependent variables involving the
two dependent variables considered thus far in this manual (specifically, an outcome of interest and
program participation). We use as a departure point the motivating model from the last subsection.
We have as an outcome of interest equation

Yi = β0 + β1 · Pi + β2 · xi + β3 · µi + εYi

= β0 + β1 · Pi + β2 · xi + ξYi

All that we have done is to collect the more involved error term β3 · µi + εYi into the more exposi-
tionally simple error term ξYi . The individual participates if Y 1

i − Y 0i − Ci > 0 or, as we derived
in the last subsection, if

β1 − γ0 − γ1 · xi − γ2 · z1i − γ3 · z2i − γ4 · µi − εCi > 0
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The left hand side of this can be thought of as a latent tendency to participate, P ∗i ,

P ∗i = β1 − γ0 − γ1 · xi − γ2 · z1i − γ3 · z2i − γ4 · µi − εCi

= δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

The individual then chooses to participate if P ∗i > 0. Note that once again we have collected a more
involved error term (−γ4 · µi − εCi ) into a simple summary term (ξCi ). Thus we have a continuous
outcome of interest and limited dependent observed participation indicator. For the purposes of
organizing our discussion, we call this Case 1.

This notational approach is common in the program impact evaluation and, more broadly, causal
modelling literatures in econometrics and statistics, and essentially gives away which dependent
variables are continuous and which are limited in nature. For instance, for the purposes of presenting
system of equations such as

Yi = β0 + β1 · Pi + β2 · xi + ξYi

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

The “*” superscript typically indicates a continuous but unobserved latent variable that underlies
an observed limited dependent variable. The observed limited dependent variable behind which lies
this latent variable is typically indicated by the same variable name sans the “*” superscript. Hence,
the latent variable P ∗i lies behind the observed program participation variable Pi. For instance, we
might observe program participation as a binary outcome, with Pi = 1 if P ∗i ≥ c (where c is some
constant such as 0) and Pi = 0 otherwise. Continuous observed outcomes without restriction on
their observed range typically have no such superscript (e.g. Yi).

Had we instead written
Y ∗i = β0 + β1 · Pi + β2 · xi + ξYi

Pi = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

this would have indicated a limited dependent observed outcome of interest (e.g. a binary outcome
of interest) but a continuous program participation outcome. It is not clear whether this case is
particularly relevant in the program impact evaluation literature since observed participation is
generally designated discretely, typically as a binary variable (as in participated versus did not
do so) and sometimes as a count outcome (as in a dose response type model where the number
treatments received is the main concern).12 Less often is it conceptualized in terms of an observed
continuous participation measure. Nonetheless, we briefly discuss this circumstance, and refer to
it as Case 2.

Finally, with the system
Y ∗i = β0 + β1 · Pi + β2 · xi + ξYi

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

we have a latent outcome of interest and latent program participation, indicating that the observed
outcome of interest and observed program participation are limited dependent in nature. For
instance, we could have a binary indicator of program participation, and wish to know the impact
of participation on a binary outcome such as whether the individual uses modern contraception or
not. We call this Case 3.

We begin with Case 1. Our focus at this point is thus

Yi = β0 + β1 · Pi + β2 · xi + ξYi

12Though as we mentioned other possibilities, such as a multinomial participation variable, are possible.
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P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

To cut the discussion to a manageable span, we assume that observed Pi is binary in nature,
equalling 1 if the individual participates and 0 if they do not. Indeed, as we discuss each successive
case, we assume that any observed limited dependent variables are binary in nature.

The reader might ask why one would simply not model Pi with the linear probability model,
potentially bringing the instrumental variables estimation within the context of the linear instru-
mental variables methods discussed in the last subsection. Indeed, this is effectively exactly the
route pursued in the last subsection. As we saw, this approach often yielded estimates of program
impact very close to the truth.

Some (Angrist and Krueger (2001), for instance) appear to advocate linear instrumental vari-
ables techniques whenever either the endogenous variable or outcome of interest is binary in nature.
In practice, this amounts to applying the linear probability model to any discrete observed depen-
dent variable. The argument for this effectively rests on the durability of the consistency of linear
instrumental variables: specifically, it is a consistent approach to estimation of the average treat-
ment effect even when either the outcome of interest or program participation is binary in nature.13

The same cannot be said for estimation of either equation by logit or probit. Since this is Case
1, we focus on the consequences of estimating the “first stage” program participation equation by
logit or probit and then plugging the predicted probability of participation from the fitted model
into the outcome equation in the place of actual observed participation status. Angrist and Krueger
(2001) caution against this strategy: it is consistent only if the assumption regarding the functional
form (e.g. probit or logit in the first stage) is exactly right.

Nonetheless, there are alternatives to linear instrumental variables that have been pursued
in this circumstance, as well as Cases 2 and 3. There are several reasons for this. First, some
object to known shortcomings of the linear probability model (such as its failure to insure that
predicted probabilities from fitted models stay within the interval spanning from 0 to 1, inclusive14),
a deficiency that could in principle become important for some kinds of simulations one might
conceivably perform. Second, under some circumstances there are alternatives that might offer
more efficient estimates of program impact (i.e. estimates that vary less from sample to sample).
Finally, and probably most dubiously, some of the alternatives have on occasion proven attractive
for the additional identification that they offer in the face of instruments that might somehow be
insufficient.

To get some sense of these alternatives, we work through one or two for each of the three Cases
we consider. The idea is not to provide comprehensive coverage of all of the available options, but
instead to give the reader a feel for the kinds of alternatives that have been proposed and, in some
cases, widely employed. For Case 1 we derive a popular likelihood-based (i.e. involving maximum
likelihood estimation) approach to the estimation of this model. This approach involves a specific
parametric assumption regarding the joint distribution of the errors {ξY , ξC}. In other words, it
involves adopting the assumption that {ξY , ξC} follow a particular bivariate (i.e. two variable)
joint distribution. Specifically, it makes a distributional assumption that has proven extremely
popular for application of instrumental variables to limited dependent variables: namely, that the
two errors follow the bivariate normal distribution.

To see how the likelihood for this model is constructed, let us consider the problem in general
and start by looking at estimation of the two equations separately. Separate estimation of the two
equations would be reasonable if the two error terms ξYi and ξCi were independent. We consider

13The consistency of the linear instrumental variables approach of course requires instruments with the properties
stipulated in the last subsection.

14Probabilities less than 0 or greater than 1 are not meaningful.
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them separately at first to give the reader some sense of the logic behind the components of the
joint estimation model driven by each equation.

We begin with the program participation equation. To fix ideas, suppose that participation
is observed as a binary choice (i.e. Pi can take on the values 1 or 0, indicating participant or
non-participant status, respectively). This has in fact been almost without exception our approach
to participation to this point in the manual. We assume that the individual participates if

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi ≥ 0

or if
−ξCi ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

The probability that the individual participates is the probability that this expression holds. Given
individual i’s draws for x, z1 and z2, the uncertainty as to whether this holds would revolve around
the error term ξC .

More specifically, the probability that this expression holds is also the cumulative density of
the random variable −ξC . In most applications, a cumulative density is indicated with a capital
F . Then, for a given random variable m and constant c

F (c) = Pr (m ≤ c)

This is in contrast to the probability density f(·), which tells us

f (c) = Pr (m = c)

Now, a straightforward property of density functions is that

F (c) =

∫ c

−∞
f (w) dw

This is just a very fancy way of saying that the probability that a variable m takes on a value less
than or equal to c is equal to the sum of the probabilities of m taking on each of the values from
minus infinity through c, for increments to the values of m that are infinitesimally small.15

15An integral
∫

can be thought of as summation
∑

across the values of a continuous variable. Think of∫ c

−∞
f (w) dw

as the sum of all the values f(w) for every tiny incremental change in value w can have in the interval between minus
infinity (−∞) and the constant c. To get some perhaps more concrete idea of what the integral in the main text is
doing, if m was a discrete variable that had M possible values that it could take on between minus infinity and c.
(For instance, if c was 8, then perhaps the only the values m could take below 8 with positive probability might be
{-10, -7, -2.3, -0.5, 0, 0.8, 1.9, 4.4 and 7 }, in which case M = 9.) Then,

Pr (m ≤ c) = F (c) =

M∑
w=1

Pr (m = mw) =

M∑
w=1

f (mw)

where mw is the wth possible value of m. In the specific numerical example we gave in parentheses above, we would
have

Pr (m ≤ 8) = F (8) = Pr (m = −10) +Pr (m = −7) +Pr (m = −2.3) +Pr (m = −0.5) +Pr (m = 0) +Pr (m = 0.8)

+Pr (m = 1.9) + Pr (m = 4.4) + Pr (m = 7) = f (−10) + f (−7) + f (−2.3) + f (−0.5) + f (0) + f (0.8)

+f (1.9) + f (4.4) + f (7)

The integral in the main text is simply exactly this idea applied to a continuous variable.
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With this notation in mind, the probability that individual i participates in the program is

Pr (Pi = 1) = Pr
(
−ξCi ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
= F (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)

=

∫ δ0+δ1·xi+δ2·z1i+δ3·z2i

−∞
f (w) dw

where f () is the probability density function for −ξC (i.e. Pr(−ξC = c) = f(c) and F (·) is its
cumulative density). If we assume that −ξCi is the difference in two Type-I extreme value random
variables, we can avoid integration altogether since the cumulative density F (δ0 + δ1 ·xi + δ2 · z1i +
δ3 · z2i) is the logistic distribution, giving rise to the logit model.

If we assume that −ξC is distributed normally with 0 mean (a standard regression assumption)
and variance 1 (that is, that it follows the standard normal distribution), then16

Pr
(
−ξC = c

)
= f (c) =

1√
2 · π

· exp
(
−c

2

2

)

then, we have

Pr (Pi = 1) =

∫ δ0+δ1·xi+δ2·z1i+δ3·z2i

−∞

1√
2 · π

· exp
(
−w

2

2

)
dw

which is also commonly written

Pr (Pi = 1) = Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)

where Φ(·) is the cumulative density function for the standard normal distribution.
Before proceeding we note that

Pr (Pi = 0) = 1− Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)
16The assumption that −ξC follows the standard normal distribution is standard in probit models. The restriction

that (σC)2 = 1, where σC is the standard deviation of −ξC , can be made without loss of generality since the
parameters {δ0, δ1, δ2, δ3} cannot be separately estimated from the variance of −ξC anyway. The variance of −ξC
is not identified from a fundamental standpoint because we do not observe the full range of variation in the latent
variable P ∗ but instead observe just the discrete outcomes P = 0 and P = 1. Put differently, the information in the
observed variation in Pi generated by the behavioral threshold for participation of

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi ≥ 0

is indistinguishable in terms of what we observe as a result of the participation decision threshold

P ∗i
σC

=
δ0
σC

+
δ1
σC
· xi +

δ2
σC
· z1i +

δ3
σC
· z2i +

ξCi
σC
≥ 0

Logit models are subject to a similar need to assume some normalizing value for the variance, though the need is
less evident from the derivations shown in this manual (demonstrating this would be a tedious exercise with little
profit in terms of the subject at hand). An immediate implication of this is that the parameters {δ0, δ1, δ2, δ3} that
we would estimate under either logit or probit should not be interpreted in any sort of absolute terms. They are not
necessarily in the same metric (i.e. to the same scale or units) as the parameters of the original motivating latent
variable model

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi ≥ 0

Rather, they are defined only conditional on the scale implied by the assumption that σC is equal to some constant
(1 in the case of probit).
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=

∫ ∞
δ0+δ1·xi+δ2·z1i+δ3·z2i

1√
2 · π

· exp
(
−w

2

2

)
dw

The logic of this is rather straightforward. −ξCi is a continuous random variable that could, in
principle, take on any value from minus infinity (−∞) to infinity (∞). We have

Pr (Pi = 1) = Pr
(
−ξCi ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
=

∫ δ0+δ1·xi+δ2·z1i+δ3·z2i

−∞

1√
2 · π

· exp
(
−w

2

2

)
dw

The last term is just the total probability “mass” of ξCi between −∞ and δ0+δ1 ·xi+δ2 ·z1i+δ3 ·z2i.
However, the probability that the individual does not participate is then the probability that ξCi
takes on any of the remaining values (those not compatible with participation) from δ0 + δ1 · xi +
δ2 · z1i + δ3 · z2i to ∞, or ∫ ∞

δ0+δ1·xi+δ2·z1i+δ3·z2i

1√
2 · π

· exp
(
−w

2

2

)
dw

Behind all of this math is the simple truth that the probability that the individual participates plus
the probability that they don’t participate must sum to 1 (because there is no third possibility:
either you do or do not participate). Therefore the sum of the total probability of all of the values
of ξCi that are compatible with participation and the total probability of all of the values of ξCi not
compatible with participation must be 1.

Suppose that we observed {Pi, xi, z1i, z2i} for a sample of N individuals indexed by i (i =
1, ..., N). The contribution of individual i to the likelihood function for probit estimation would then
be the probability of their observed outcome Pi given {xi, z1i, z2i} and the parameters {δ0, δ1, δ2, δ3}:

Pr (Pi|δ0, δ1, δ2, δ3)

= Pr (P = 1|δ0, δ1, δ2, δ3)Pi · Pr (P = 0|δ0, δ1, δ2, δ3)(1−Pi)

= Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)Pi

· (1− Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i))1−Pi

The likelihood for the overall sample would then just be the product of the likelihood functions for
each individual:

L (δ0, δ1, δ2, δ3) =
N∏
i=1

Pr (Pi|δ0, δ1, δ2, δ3)

Maximum likelihood estimation then seeks those values of {δ0, δ1, δ2, δ3} that maximize the likeli-
hood function.

We now turn to the outcome equation. This is a linear model for a continuous outcome (Y
being continuous under Case 1). Specifically, the regression equation for the outcome is

Yi = β0 + β1 · Pi + β2 · xi + ξYi

The error term for this is
ξYi = Yi − β0 − β1 · Pi − β2 · xi

Maximum likelihood estimation of the parameter of those models uses the probability

Pr
(
ξYi = Yi − β0 − β1 · Pi − β2 · xi

)
= f (Yi − β0 − β1 · Pi − β2 · xi)
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All that remains is to make some assumption regarding the functional form of the probability
density.

A common assumption is that ξY is normally distributed. The individual’s contribution to the
likelihood function is the probability for the error draw ξYi :

Pr
(
ξYi |β0, β1, β2, σY

)
= Pr

(
Yi − β0 − β1 · Pi − β2 · xi|β0, β1, β2, σY

)
=

1

σY ·
√

2 · π
· exp

(
−1

2
·
(
Yi − β0 − β1 · Pi − β2 · xi

σY

)2
)

Notice that the standard deviation of ξY , σY , is a parameter to be estimated for this model.17 The
overall likelihood function is then

L
(
β0, β1, β2, σ

Y
)

=
N∏
i=1

Pr
(
Pi|β0, β1, β2, σY

)
Maximum likelihood estimation seeks values for {β0, β1, β2, σY } that maximize the likelihood.

We have now gotten some sense of how to separately estimate the regression models for the
outcome of interest Y and program participation P . This would be justifiable if ξYi and ξCi were
not statistically related. However, if they were correlated (for instance, via a common unobserved
characteristic µi present in both ξYi and ξCi ) this would yield biased and inconsistent estimates of
program impact.

Joint estimation of the outcome and participation equations (i.e. estimation of the equations
together) potentially allows for consistent estimation of program impact. The basic idea behind joint
estimation is that we control for the potential endogeneity of program participation in the outcome
equation by explicitly capturing any correlation between the error terms in the two equations
through the joint estimation process. To jointly estimate we essentially assume that the two error
terms follow some bivariate distribution (the bivariate normal distribution would be an example
of a specific parametric bivariate distribution) and then use the joint probabilities of the outcome
of interest (or, rather, the error term from the outcome of interest) and the individuals observed
participation status as their contribution to the likelihood. The bivariate distributional assumption
creates an avenue by which the error terms from the outcome and program participation models
are correlated.

To get some general sense of how joint estimation is set up, consider the joint probability density
function

Pr
(
ξYi = c1, ξ

C
i = c2

)
= f (c1, c2)

This is simply the bivariate generalization of the univariate densities we considered for separate
estimation of the outcome and program participation equations. Combining the logic of the two
separate estimations that we developed above, the individual’s contribution to the likelihood if they
are a participant is ∫ δ0+δ1·xi+δ2·z1i+δ3·z2i

−∞
f (Yi − β0 − β1 · Pi − β2 · xi, w) dw

Notice that this basically cannibalizes the logic of the separate maximum likelihood estimation
processes that we developed for the participation and outcome equations. It provides the probability
that

Pr
(
ξYi = Yi − β0 − β1 · Pi − β2 · xi,−ξC1 ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
17The fundamental reason we can do so is that we observe the full variation in Y .
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This is just the joint probability of participation and the outcome value being Yi, given {xi, z1i, z2i}.
Their probability in the event that they do not participate is∫ ∞

δ0+δ1·xi+δ2·z1i+δ3·z2i
f (Yi − β0 − β1 · Pi − β2 · xi, w) dw

This follows the logic for the non-participation probability discussed earlier.
The departure point for the particular model for which we examine a simulated example is

that ξYi and ξCi are jointly normally distributed (or more specifically, that they follow the bivariate
normal distribution). Joint normality is perhaps the most common parametric assumption for
limited dependent variable instrumental variables models. By that we mean that it is the most
common specific assumption regarding the particular functional form (i.e. particular distributional
assumption) for the joint distribution of ξYi and ξCi .

Operationalizing this assumption simply involves plugging in the bivariate normal function form
for f(c1, c2) into ∫ δ0+δ1·xi+δ2·z1i+δ3·z2i

−∞
f (Yi − β0 − β1 · Pi − β2 · xi, w) dw

and ∫ ∞
δ0+δ1·xi+δ2·z1i+δ3·z2i

f (Yi − β0 − β1 · Pi − β2 · xi, w) dw

The bivariate normal density is a bit complex. It is

fB
(
ξYi , ξ

C
i

)
=

1

2 · π · σY · σC ·
√

1− ρ2
· exp

(
−1

2
D
(
ξYi , ξ

C
i

))
where

D
(
ξYi , ξ

C
i

)
=

1

1− ρ2

(ξYi − µξY
σY

)2

+

(
ξCi − µξC

σC

)2

− 2ρ ·

(
ξYi − µξY

)
·
(
ξCi − µξC

)
σY · σC


where fB(·) indicates the bivariate normal density. There are few restrictions that can be imposed
on this immediately. First, σC = 1. Further, µξY = µξC = 0 (because we assume that the error
term from the latent variable models have zero mean). With these restrictions in place, we have

fB
(
ξYi , ξ

C
i

)
=

1

2 · π · σY ·
√

1− ρ2
· exp

(
−1

2
D
(
ξYi , ξ

C
i

))
where

D
(
ξYi , ξ

C
i

)
=

1

1− ρ2

( ξYi
σY

)2

+
(
ξCi

)2
+ 2ρ · ξ

Y
i · ξCi
σY


Even with the restrictions this is still a very complicated density function.

The probability of the observed Yi and Pi for individual i is

Pr
(
Yi, Pi|δ0, δ1, δ2, δ3, β0, β1, β2, ρ, σY

)
= Prob

(
Yi − β0 − β1 · Pi − β2 · xi, P = 1|δ0, δ1, δ2, δ3, β0, β1, β2, ρ, σY

)Pi
·Prob

(
Yi − β0 − β1 · Pi − β2 · xi, P = 0|δ0, δ1, δ2, δ3, β0, β1, β2, ρ, σY

)(1−Pi)
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=

(∫ δ0+δ1·xi+δ2·z1i+δ3·z2i

−∞
f (Yi − β0 − β1 · Pi − β2 · xi, w) dw

)Pi

·
(∫ ∞

δ0+δ1·xi+δ2·z1i+δ3·z2i
f (Yi − β0 − β1 · Pi − β2 · xi, w) dw

)(1−Pi)

where the standard normal density function fB(·) is applied for the density f(·). The adoption
of the standard normal density function implies the addition of the parameter ρ, which is the
correlation between the error terms ξCi and ξYi . The overall likelihood function is then just the
product of these individual contributions across the sample:

L (δ0, δ1, δ2, δ3, β0, β1, β2, ρ) =
N∏
i=1

Pr (Yi, Pi|δ0, δ1, δ2, δ3, β0, β1, β2, ρ)

Maximum likelihood estimation seeks values of the parameters {δ0, δ1, δ2, δ3, β0, β1, β2, ρ} that max-
imize the likelihood.

STATA Output 6.17 (6.1.do)

. etregress Y x, treat(P= x z1 z2)

Iteration 0: log likelihood = -31838.6
Iteration 1: log likelihood = -31838.25
Iteration 2: log likelihood = -31838.249

Linear regression with endogenous treatment Number of obs = 10000
Estimator: maximum likelihood Wald chi2(2) = 9636.59
Log likelihood = -31838.249 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Y
x 1.966486 .0342883 57.35 0.000 1.899282 2.03369
P 1.812895 .245371 7.39 0.000 1.331977 2.293814

_cons 2.063856 .1468008 14.06 0.000 1.776131 2.35158

P
x -.4146941 .0088248 -46.99 0.000 -.4319904 -.3973977

z1 .1279286 .0072017 17.76 0.000 .1138135 .1420437
z2 -.149916 .0073103 -20.51 0.000 -.1642439 -.1355881

_cons .2718587 .0144125 18.86 0.000 .2436106 .3001068

/athrho -.2882669 .0435902 -6.61 0.000 -.3737021 -.2028317
/lnsigma 1.274525 .0089846 141.86 0.000 1.256915 1.292134

rho -.2805389 .0401595 -.3572256 -.2000952
sigma 3.577 .032138 3.514562 3.640548
lambda -1.003488 .1493879 -1.296283 -.7106928

LR test of indep. eqns. (rho = 0): chi2(1) = 41.85 Prob > chi2 = 0.0000

This estimator is implemented by STATA’s etregress command. In Output 6.17, we estimate
the over-identified case from the simulation example from the last subsection (in other words, we
use both instruments, z1 and z2). Obviously, the most important issue is the estimate of program
impact, which at 1.81295 is a reasonably accurate estimate of true program impact of 2 (it is not
much further from it than the over-identified model estimates presented in the last subsection).
This model also provides a test of the correlation of the error terms in the two equations (the
outcome equation Y and the participation equation P ∗) in the form of the statistical significance
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of /athrho, which is simply a function of ρ. It is significant (with a z-statistic of -6.61 and
corresponding p-value of 0.000), indicating that the errors are correlated. This is not a surprising
result since we created errors correlated by construction via the unobserved characteristic µ common
to the two error terms.

Output 6.17 is based on maximum likelihood estimation. In other words, it involves joint es-
timation of the program participation and outcome equations. This is a relatively straightforward
exercise since the bivariate normal density function provides a natural foundation for joint esti-
mation of the two equations via maximum likelihood.18 There is also a two-step version of this
estimator. This is a common alternative to joint estimation in models of this nature assuming
normality. Joint estimation is often referred to as “full information” likelihood estimation, because
by joint estimating it takes into account all of the information available from the sample in one
estimation. By contrast, the two-step estimation is often referred to as “limited information” be-
cause actual estimation of the outcome and program participation equations is done separately,
insuring that for each estimation process only some of the information in terms of variation related
to the system of equations (i.e. the outcome equation and the participation equation) is taken
into account. In general full information maximum likelihood has better statistical properties (e.g.
smaller standard errors) but can be quite complicated to estimate, depending on the nature of the
system of equations.

To get some idea of how the two-step estimation process under the bivariate normality assump-
tion works, we begin with the system of equations for Case 1:

Yi = β0 + β1 · Pi + β2 · xi + ξYi

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

To bring this discussion more in line with the classical discussion of this problem (found in Maddala
1982) we introduce new error terms:

ξY Yi = −ξYi
and

ξCCi = −ξCi
Since {−ξYi ,−ξCi } follow a bivariate normal distribution (by assumption) so to do {ξY Yi , ξCCi }. This
change of variables just helps to avoid a bunch of confusing issues when determining the sign of
the coefficients of some parameters down the line.

With this in hand, we now have

Yi = β0 + β1 · Pi + β2 · xi − ξY Yi

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i − ξCCi
Once again, the individual participates if

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i − ξCCi ≥ 0

or
ξCCi ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

Therefore, this condition holds when Pi = 1.

18The STATA command etregress follows common practice by actually reducing the bivariate normal density
to a univariate normal density. We omit this step since it is tedious but would not add much to our understanding
of the basic mechanics of the model.



6.1. INSTRUMENTAL VARIABLES BASICS 245

Next we consider the expectation of the outcome conditional on participation (i.e. Pi = 1):

E (Yi|Pi = 1) = β0 + β1 + β2 · xi − E
(
ξY Yi |Pi = 1

)
= β0 + β1 + β2 · xi − E

(
ξY Yi |ξCCi ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
This simply invokes the participation condition from the last paragraph. Notice that the expectation
of the new error term

E
(
ξY Yi |ξCCi ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
is the expectation of one (by assumption) normally distributed random variable (ξY Yi ) conditional
on another (by assumption) normally distributed random variable (ξCCi ) being less than some
value (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i). The next step in developing the two-step estimator involves a
joint normality assumption between the two equations and then relies on an extremely convenient
property of the bivariate normal distribution.

Specifically, if two random variables w and h together follow a bivariate normal distribution,
then

E (w|h < c) = ρ · σW · −φ (c)

Φ (c)

where φ(·) is the standard normal probability density and Φ(·) is the standard normal cumulative
density. The expression

−φ (c)

Φ (c)

is also known as the Inverse Mill’s Ratio, which is often denoted λ(c).19

Given this
E
(
ξY Yi |ξCCi ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
= ρ · σξY Y · −φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)

Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)
19This is the bivariate generalization of the Inverse Mill’s ratio, which was classically laid out in univariate terms.

Specifically, suppose that w is a normally distributed random variable with mean µ and variance σ2 and c is some
constant. Then,

E (w|w ≥ c) = µ+ σ ·
φ
(
α−µ
σ

)
1− Φ

(
α−µ
σ

)
and

E (w|w ≤ c) = µ+ σ ·
−φ
(
α−µ
σ

)
Φ
(
α−µ
σ

)
There are actually a number of slightly different versions of the Inverse Mills ratio. For instance, even in the simple
univariate case, both

φ
(
α−µ
σ

)
1− Φ

(
α−µ
σ

)
and

−φ
(
α−µ
σ

)
Φ
(
α−µ
σ

)
are commonly referred to as the Inverse Mill’s ratio. See

http://www.stata.com/support/faqs/statistics/inverse-mills-ratio/

for a rather interesting discussion of the slightly distinct versions of the Inverse Mill’s ratio that have been put forth
in the bivariate context over the years.
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Notice that in principle the Inverse Mill’s Ratio could be computed from the fitted probit model
from a probit regression of Pi on xi, z1i and z2i. Plugging the Inverse Mill’s ratio back into the
original expectation of interest, we have

E (Yi|Pi = 1) = β0 + β1 + β2 · xi − E
(
ξY Yi |Pi = 1

)
= β0 + β1 + β2 · xi − E

(
ξY Yi |ξCCi ≤ δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
= β0 + β1 + β2 · xi + ρ · σξY Y · φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)

Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)
We now have one “branch” of the two step estimator in place, and in developing it have introduced
the essential logic of the other branch of the estimator.

The other half of the two-step estimator focuses on the expectation of Yi conditional on the
individual not participating:

E (Yi|Pi = 0) = β0 + β2 · xi − E
(
ξY Yi |Pi = 0

)
= β0 + β2 · xi − E

(
ξY Yi |ξCCi > δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
To develop an expression for

E
(
ξY Yi |ξCCi > δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
we note that if two random variables w and h together follow a bivariate normal distribution, then

E (w|h > c) = ρ · σW · φ (c)

1− Φ (c)

where φ(·) is the standard normal probability density and Φ(·) is the standard normal cumulative
density. The expression

φ (c)

1− Φ (c)

is also referred to as an Inverse Mill’s Ratio. Using this result, we have

E (Yi|Pi = 0) = β0 + β2 · xi − E
(
ξY Yi |ξCCi > δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i

)
= β0 + β2 · xi − ρ · σξ

Y Y · φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)
1− Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)

This completes the other “branch” of the two-step estimator.
We thus have the new system

E (Yi|Pi = 1) = β0 + β1 + β2 · xi + ρ · σξY Y · φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)
Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)

E (Yi|Pi = 0) = β0 + β2 · xi − ρ · σξ
Y Y · φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)

1− Φ (δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i)
Each of these regressions is referred to as a censored regression because it would be estimated
with a censored sample.
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Censoring and truncation refer to two different types of missing data problems. Though much
has been written about them, the chief difference is that under censoring we observe the degree of
missingness and typically have some information about the incomplete (in the sense that they are
missing values for key variables) observations, whereas neither is typically the case with truncation
(limiting severely the options for addressing any bias associated with truncation).

The regressions are censored in the sense that in the first case we restrict attention to only
the subsample for whom Pi = 1, in some sense thus behaving as if Yi is unobserved for those for
whom Pi = 0, while for the second equation we proceed as if Yi could be observed only if Pi = 0.
Because these two specifications are closely related and the participation decision determines the
differences in specification between observations, this basic setup is often referred to as a switching
regression.

Estimation of the two step model then proceeds as follows:

1. Conduct probit regression of Pi on xi, z1i and z2i;

2. Use the fitted model to calculate the predicted Inverse Mill’s Ratios. For participants, this
would be

λ̂i =
−φ

(
δ̂0 + δ̂1 · xi + δ̂2 · z1i + δ̂3 · z2i

)
Φ
(
δ̂0 + δ̂1 · xi + δ̂2 · z1i + δ̂3 · z2i

)
while for non-participants it would be

λ̂i =
φ
(
δ̂0 + δ̂1 · xi + δ̂2 · z1i + δ̂3 · z2i

)
1− Φ

(
δ̂0 + δ̂1 · xi + δ̂2 · z1i + δ̂3 · z2i

)
where φ(·) is then standard normal probability density and Φ(·) is the standard normal
cumulative density;

3. Regress Yi on Pi, xi and λ̂i.

This multistage approach has the advantage that, in principle, it could be estimated with any
statistical software that includes capabilities for linear and probit regression. On the other hand,
a package supporting this would have an advantage analogous to that provided by purpose-built
linear two-stage least squares: it would produce correct standard errors that account correctly for
first stage variation.

The two-step estimator can be implemented in STATA as an option under the etregress
command. Output 6.18 provides estimates of the two-step version of the model (prompted by the
two option in the etregress command line). The results are more or less the same as in the
maximum likelihood case. The coefficient on the predicted Inverse Mills Ratio from the regression
of Yi on Pi, xi and λ̂i is represented by the coefficient on lambda in Output 6.18. A significance
test on the coefficient for lambda is tantamount to a test of correlation of the error terms {ξYi , ξCi }.
With a z-statistic of -6.62 and corresponding p-value of 0.000, the coefficient for lambda is indeed
significant, providing evidence consistent with the error terms being correlated.

Before proceeding to Case 2, we note a major way in which this model departs from the linear
instrumental variables framework: it is identified (in the sense that it will at least estimate some-
thing) even without exclusion restrictions in the form of variables such as z1 and z2 that appear
in the program participation equation but not the outcome equation. In the linear two-stage least
squares case, the first stage prediction was

P̂i = δ̂0 + δ̂1 · xi + δ̂2 · z1i + δ̂3 · z2i
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where the δ̂s are the estimated values of the parameters δ from the first stage linear regression of Pi
on xi, z1i and z2i. The presence of the instruments z1i and z2i creates some variation in predicted
participation P̂i not related to xi. If they had been omitted, the predicted participation would have
been

P̂i = δ̂0 + δ̂1 · xi
Inserting this into

Yi = β0 + β1 · P̂i + β2 · xi + εYi

= β0 + β1 ·
(
δ̂0 + δ̂1 · xi

)
+ β2 · xi + εYi

= β0 + β1 · δ̂0 + β1 · δ̂1 · xi + β2 · xi + εYi

Notice that the two terms
β1 · δ̂1 · xi

and
β2 · xi

are not distinguishable from each other in terms of the variation in Yi that they introduce: they
both vary linearly with xi. Therefore the two terms are not separately identified. This is also
referred to as the multicollinearity problem in regression.

STATA Output 6.18 (6.1.do)

. etregress Y x, treat(P= x z1 z2) two

Linear regression with endogenous treatment Number of obs = 10000
Estimator: two-step Wald chi2(3) = 11746.12

Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Y
x 1.989078 .0375077 53.03 0.000 1.915564 2.062592
P 2.002369 .2761537 7.25 0.000 1.461117 2.54362

_cons 1.953914 .1642172 11.90 0.000 1.632054 2.275774

P
x -.4150826 .008854 -46.88 0.000 -.4324362 -.3977291

z1 .1269563 .0073346 17.31 0.000 .1125808 .1413318
z2 -.1490121 .0074129 -20.10 0.000 -.163541 -.1344832

_cons .2721292 .0144512 18.83 0.000 .2438054 .300453

hazard
lambda -1.125637 .1699686 -6.62 0.000 -1.45877 -.792505

rho -0.31327
sigma 3.59321

The maximum likelihood and two-step models we have considered for Case 1 that assume that
{ξYi , ξCi } follow the bivariate normal distribution do not in principle suffer from this problem: they
do not absolutely require exclusion restrictions. The reason is that the assumption of bivariate
normality introduces a nonlinear functional form, based on the normal distribution, that allows for
identification even in the absence of exclusion restrictions in the form of variables z1i and z2i that
appear in the participation equation but not the outcome equation. This is perhaps easiest to see
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with the two-step model. The nonlinearity means that the variation generated from a first-stage
fitted model involving only xi will not be linear. The reason is that the normal probability density
and cumulative densities φ(·) and Φ(·) are not linear. But that means that the variation from the
first stage is not exactly the same as the linear variation in xi already in the outcome equation via
the linear term β2 · xi. Thus the nonlinear and linear functions of x can be included in the same
regression specification.

To see this, consider a simple regression example involving basic variables W and Q. Starting
with the basic, simple model

W = ω0 + ω1 ·Q+ ζ

it should be straightforward that we cannot separately identify another term linear in Q along the
lines of

W = ω0 + ω1 ·Q+ ω2 ·Q+ ζ

However, we could add and separately identify (i.e. estimate the coefficient parameter for) terms
non-linear in Q. Examples might include:

W = ω0 + ω1 ·Q+ ω2 ·Q2 + ζ

W = ω0 + ω1 ·Q+ ω2 · exp (Q) + ζ

W = ω0 + ω1 ·Q+ ω2 · ln (Q) + ζ

The reason that the parameters ω1 and ω2 are technically separately identified (i.e. both estimable)
is that the added term does not offer more variation linear in Q but instead non-linear in Q.
Identification such as this is identification by non-linearity.

STATA Output 6.19 (6.1.do)

. etregress Y x , treat(P= x ) two

Linear regression with endogenous treatment Number of obs = 10000
Estimator: two-step Wald chi2(3) = 11840.18

Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Y
x 1.9269 .0840427 22.93 0.000 1.762179 2.091621
P 1.480892 .688932 2.15 0.032 .1306097 2.831174

_cons 2.2565 .4013276 5.62 0.000 1.469913 3.043088

P
x -.3860353 .0083773 -46.08 0.000 -.4024545 -.3696162

_cons .2562942 .0139695 18.35 0.000 .2289144 .2836739

hazard
lambda -.7343532 .4124184 -1.78 0.075 -1.542678 .0739719

rho -0.20669
sigma 3.5529664

In Outputs 6.19 and 6.20 we repeat the estimation in 6.18 with xi as the only first and second
stage regressor. We begin on a slightly hopeful note with Output 6.19, in which we can see that
the estimate of program impact (the most important indicator of performance, after all) is, at



250 CHAPTER 6. INSTRUMENTAL VARIABLES

1.480892, in the general neighborhood of the true value of 2. This is certainly an improvement
over the estimate of program impact of .263087 from simple regression of Y on P and x reported
in Output 6.4. However, to be sure, is not a great estimate. Looking beyond it, there are other
somewhat disturbing indications. For instance, the coefficient on lambda is certainly significant
(with a t-statistic of -1.78 and corresponding p-value of 0.075) but not as strongly as in the model
with exclusion restrictions.

Figure 6.7: The Inverse Mills Ratio

In Output 6.20 we present results from a slight tweaking of the model. Specifically, we reduce
the variability in x by a factor of 10. The program impact estimate is now terrible, and the model
is no longer capable of picking up the correlation in {ξYi , ξCi }, with a t-statistic and p-value for
lambda of 0.30 and 0.768, respectively. This demonstrates that reasonable performance under
identification by non-linearity is not a guarantee and is, indeed, somewhat fragile.

One reason that the reduction in the variation in xi in the model behind Output 6.20 might
have been consequential is that it likely made the variation in the Inverse Mills Ratio far more
linear in xi. The basic problem can be seen in Figure 6.7, which plots the function

φ (w)

Φ (w)

This is essentially one of the Inverse Mills Ratios. Plainly, the Inverse Mills Ratio is nearly linear
in w for much of the range of w. An implication of this is that one may need a great deal of
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variation in the argument of the Inverse Mills Ratio to be confident that it is truly non-linear in
those arguments. By reducing the variation in xi, we restricted the range of variation in the Inverse
Mill’s Ratio, potentially to portions largely linear in xi. This is an important thing to bear in mind
when relying on identification by nonlinearity via models that rely on joint normality, particularly
their two-stage incarnations relying on the Inverse Mills Ratio: a necessary but not necessarily
sufficient condition for good model performance is likely to be substantial enough variation in the
first-stage linear prediction20 to insure that the Inverse Mills Ratio is non-linear enough to insure
reasonable identification. One way of assessing this is to graph the predicted Inverse Mills Ratio
against the linear first-stage prediction to see how nonlinear in that linear first-stage prediction it
appears to be.

STATA Output 6.20 (6.1.do)

. etregress Y x , treat(P= x ) two

Linear regression with endogenous treatment Number of obs = 10000
Estimator: two-step Wald chi2(3) = 100.19

Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Y
x 1.07308 1.94759 0.55 0.582 -2.744125 4.890285
P -3.541461 13.17488 -0.27 0.788 -29.36375 22.28083

_cons 5.284988 7.916494 0.67 0.504 -10.23105 20.80103

P
x -.3821541 .0636103 -6.01 0.000 -.506828 -.2574802

_cons .2563553 .0126979 20.19 0.000 .2314678 .2812428

hazard
lambda 2.415759 8.177005 0.30 0.768 -13.61088 18.44239

rho 0.60623
sigma 3.9849

One important potential wrinkle we have not discussed is model performance in the event that
the assumption that {ξYi , ξCi } follow the bivariate normal distribution is wrong. In other words, the
assumption of bivariate normality provided identification to the model, and it performed well with
exclusion restrictions and reasonably well without them but with strong variation in xi. However,
this was in a sample where bivariate normality was not a wholly inappropriate assumption. Indeed,
each of the errors was by itself normally distributed.21 It is reasonable to ask what might have
happened had bivariate normality been a less appropriate assumption for this sample. We will
briefly discuss this later in this subsection.

We have now worked through a maximum-likelihood instrumental variables model involving the

20That is,
δ̂0 + δ̂1 · xi

which is then plugged into the Inverse Mills Ratio.
21Each error term was a sum of linear terms involving µi and εYi or εCi . However, µ and the εs were normally dis-

tributed by construction of the numerical example, and linear combinations of normally distributed random variables
are themselves normally distributed. Hence, if W and S are normally distributed, then so is R = a ·W + b ·S for any
constants a and b.
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popular assumption of joint normality of the error terms in the outcome and program participation
equations. We have learned three important things:

1. The basics of likelihood construction in this tradition;

2. There is often a two-step variant of the model that relies in some fashion or another on the
Inverse Mills Ratio;

3. The model is technically identified by nonlinearity, but the model may not perform well and
what performance it can muster might be fragile.

Although this discussion has focused on Case 1, some or all of its lessons carry over to Cases 2 and
3.

We next briefly consider Case 2:

Y ∗i = β0 + β1 · Pi + β2 · xi + ξYi

Pi = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

This is a model that assumes that the outcome is binary but the program participation variable is
continuous. As such it is not really a model suitable for many program impact evaluation applica-
tions (for which program participation is really a binary choice), but we discuss it because it is an
extremely important instrumental variables model that could potentially have some applicability
(one might encounter a program participation to which is more or less continuous, as in a limiting
case of a dose-response type setup).

Many authors would probably essentially recommend applying linear instrumental variables (e.g.
two-stage least squares) to Case 2 on the argument that it will still lead to a consistent estimate
of average treatment effects (e.g. Angrist and Krueger (2001), Angrist and Pischke (2009), etc.).
In the context, this means that the outcome equation is modelled by the linear probability model.
It must be acknowledged, however, that the linear instrumental variables approach in this setting
has not met with universal endorsement. For instance, Lewbel et. al. (2012) offer a number of
objections to the use of the linear probability model centered mainly on the idea that it is just not
a very good fit to the data in many applications, and drive the point home with an example under
which the linear probability model might be misleading. It is also worth remembering that our
program participation variable is in fact binary. Thus, the estimation of the program participation
equation under the assumption that P is continuous is in practice estimation of that equation by
the linear probability model. This will become somewhat of an issue when we consider models for
Case 2 that assume the bivariate normality of {ξYi , ξCi }.

To provide an example of the performance of two-stage least squares (as well as an empirical
demonstration of all remaining models in this subsection) we introduce a new simulated sample. The
data are generated by STATA do-file 6.2.do, which in terms of data setup is exactly like STATA
do-file 6.1.do with one small modification: the potential outcomes, and the observed outcome,
are now discrete. Specifically, we constructed the potential outcome equations in exactly the same
fashion as before, but now discretized them according to whether or not they exceed zero. Thus, we
initially create a continuous potential outcome variable Y 1 exactly as in STATA do-file 6.1.do, but
in STATA do-file 6.2.do then re-assign Y 1 the value 1 if the original continuous potential outcome
Y 1 exceeds 0, and 0 otherwise. Similarly, we re-assign Y 0 the value 1 if the original continuous
potential outcome Y 0 exceeds 0, and 0 otherwise. With both potential outcomes {Y 1, Y 0} so
discretized, the observed outcome Y (which is just Y = P · Y 1 + (1 − P ) · Y 0) is also effectively
discretized.



6.1. INSTRUMENTAL VARIABLES BASICS 253

STATA Output 6.21 (6.2.do)

. * Basic summary statistics: participation

. tab P

P Freq. Percent Cum.

0 4,187 41.87 41.87
1 5,813 58.13 100.00

Total 10,000 100.00

STATA Output 6.22 (6.2.do)

. * Basic summary statistics: variable means

.

. by P, sort: summarize Y y1 y0 c x* z* mu epsilon*

-> P = 0

Variable Obs Mean Std. Dev. Min Max

Y 4187 .8619537 .3449898 0 1
y1 4187 .9343205 .2477506 0 1
y0 4187 .8619537 .3449898 0 1
c 4187 5.575921 2.770066 2.002451 19.11571

x0 4187 1 0 1 1

x 4187 1.130789 1.721677 -5.620321 7.176875
z1 4187 -.3372715 1.952999 -8.078415 6.060055
z2 4187 .383663 1.959136 -6.330251 6.769236
mu 4187 .7467416 1.903202 -5.616416 7.12235

epsilony 4187 -.0304688 2.972894 -10.58663 10.57696

epsilonc 4187 1.772528 2.597622 -7.321414 11.07838

-> P = 1

Variable Obs Mean Std. Dev. Min Max

Y 5813 .6504387 .4768724 0 1
y1 5813 .6504387 .4768724 0 1
y0 5813 .4747979 .4994074 0 1
c 5813 -2.267171 3.135526 -17.07104 1.997842

x0 5813 1 0 1 1

x 5813 -.829659 1.772296 -8.141914 4.701032
z1 5813 .2619722 1.990245 -7.180359 8.420812
z2 5813 -.3029925 1.965626 -6.960695 6.588125
mu 5813 -.5577272 1.92052 -7.726572 7.586161

epsilony 5813 -.034938 2.950077 -10.366 12.81559

epsilonc 5813 -1.182473 2.631718 -11.73894 8.629721

In Output 6.21 we report basic participation patterns under this slight but important tweak of
the original simulation model from STATA do-file 6.1.do. The participation rate is exactly the same
as it was before the tweak to discretize Y 1, Y 0 and Y . The reason is that participation was still
based on the pre-discretization (i.e. when Y 1 and Y 0 were still continuous) participation decision
rule of

Y 1 − Y 0 − C ≥ 0
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This can be justified by appealing to the idea that the potential outcomes and cost are in the metric
of indirect utility or some related welfare measure from other social sciences.

In Output 6.22 we provide means of the key variables between participants and non-participants.
The only real difference between this and the figures in Output 6.2 lies with Y 1, Y 0 and Y , the values
of which reflect the discretization process added to STATA do-file 6.2.do. Even then, however, the
qualitative patterns to the Y s in Output 6.22 are much the same as in Output 6.2, even if the scale
has been changed dramatically by discretization.

Finally (in terms of summary statistics), Output 6.23 provides the correlations among program
participation P , the instruments z and the unobservables µ, εY and εC . This table is identical to
Output 6.3. The reason for this is that the discretization process has not changed the underlying
realities of the latent variable relationships of the model.

STATA Output 6.23 (6.2.do)

. * Correlations among observables and unobservables

.

. corr P z* mu epsilony epsilonc
(obs=10000)

P z1 z2 mu epsilony epsilonc

P 1.0000
z1 0.1481 1.0000
z2 -0.1701 -0.0034 1.0000
mu -0.3188 -0.0001 0.0155 1.0000

epsilony -0.0007 0.0090 -0.0083 0.0065 1.0000
epsilonc -0.4866 0.0071 0.0078 -0.0092 -0.0041 1.0000

STATA Output 6.24 (6.2.do)

. * Cross sectional regression

. reg Y P x

Source SS df MS Number of obs = 10000
F( 2, 9997) = 1858.74

Model 522.822468 2 261.411234 Prob > F = 0.0000
Residual 1405.96753 9997 .140638945 R-squared = 0.2711

Adj R-squared = 0.2709
Total 1928.79 9999 .19289829 Root MSE = .37502

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .0162611 .0086839 1.87 0.061 -.0007612 .0332833
x .1161857 .0021416 54.25 0.000 .1119877 .1203837

_cons .7305721 .0062813 116.31 0.000 .7182596 .7428846

True average program impact at the population level is still

E
(
Y 1 − Y 0

)
which is estimated in the sample by the average of Y 1 − Y 0 across the 10,000 individuals in the
sample. Since the Y s are now discretized, this average should be taken across those discretized
variables and is interpreted as the change in the probability that the individual makes the binary



6.1. INSTRUMENTAL VARIABLES BASICS 255

choice as the individual switches from non-participant to participant. This average in the sample is
.1324. In other words, the program impact is to increase the probability that the individual makes
the binary choice by 13.24 percentage points. To put it in more concrete terms, the probability
that Y = 1 increases by 13.24 percentage points on average as P switches from 0 (i.e. P = 0) to 1
(i.e. P = 1).

Against this true program impact, Outputs 6.24 and 6.25 provide program impact estimates
from simple regression of Y on P and x, in the former case with simple linear regression (i.e.
the linear probability model) and in the latter case from logit regression (the results with probit
are essentially the same, as the reader can easily confirm with simple modification of STATA do-
file 6.2.do to perform probit instead of logit estimation). In both cases the estimate of program
impact is far from the truth. The linear probability model provides an estimate of .0162611, only
a bit over 10 percent of the true program impact. The figure from the logit model is .0148932,
which is in the near neighborhood of the program impact estimate from the linear probability
model. Discretization of the Y s has apparently not overcome the deficiencies of the straightforward
program impact regressions.

STATA Output 6.25 (6.2.do)

. logit Y P x

Iteration 0: log likelihood = -5741.0029
Iteration 1: log likelihood = -4269.5901
Iteration 2: log likelihood = -4124.5278
Iteration 3: log likelihood = -4122.5123
Iteration 4: log likelihood = -4122.512

Logistic regression Number of obs = 10000
LR chi2(2) = 3236.98
Prob > chi2 = 0.0000

Log likelihood = -4122.512 Pseudo R2 = 0.2819

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P .112547 .0650359 1.73 0.084 -.014921 .2400149
x .8843894 .0216051 40.93 0.000 .8420442 .9267346

_cons 1.504836 .0504358 29.84 0.000 1.405984 1.603688

.

. replace P=0
(5813 real changes made)

.

. predict P0
(option pr assumed; Pr(Y))

.

. replace P=1
(10000 real changes made)

.

. predict P1
(option pr assumed; Pr(Y))

.

. g mx= P1-P0

.

. su mx

Variable Obs Mean Std. Dev. Min Max

mx 10000 .0148932 .0092435 .0000414 .0281293

In Output 6.26 we report the first stage of standard two-stage least squares estimation applied
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to Case 2. This is identical to Output 6.11. In both cases we simply apply a linear probability
model to the “first stage” participation decision with an over-identified model (i.e. one that includes
both instruments, z1i and z2i). As we can see, the two instruments are, even separately considered,
re-assuringly statistically significant predictors of program participation.

STATA Output 6.26 (6.2.do)

. * First stage of ``manual´´ two-stage least squares,

. * two instrument (over-identified) case

.

. reg P x z1 z2

Source SS df MS Number of obs = 10000
F( 3, 9996) = 1333.14

Model 695.526508 3 231.842169 Prob > F = 0.0000
Residual 1738.37659 9996 .173907222 R-squared = 0.2858

Adj R-squared = 0.2856
Total 2433.9031 9999 .243414651 Root MSE = .41702

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.119577 .0020847 -57.36 0.000 -.1236635 -.1154906
z1 .0365565 .0020887 17.50 0.000 .0324622 .0406508
z2 -.0428673 .0020938 -20.47 0.000 -.0469716 -.0387629

_cons .5791768 .0041704 138.88 0.000 .5710019 .5873517

.

. predict Phat
(option xb assumed; fitted values)

STATA Output 6.27 (6.2.do)

. * Second stage of ``manual´´ two-stage least squares,

. * two instrument (over-identified) case

.

. reg Y Phat x

Source SS df MS Number of obs = 10000
F( 2, 9997) = 1867.37

Model 524.58987 2 262.294935 Prob > F = 0.0000
Residual 1404.20013 9997 .140462152 R-squared = 0.2720

Adj R-squared = 0.2718
Total 1928.79 9999 .19289829 Root MSE = .37478

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Phat .133629 .03331 4.01 0.000 .0683348 .1989233
x .13018 .0043914 29.64 0.000 .121572 .1387881

_cons .6624695 .0196881 33.65 0.000 .623877 .7010621

Output 6.27 reports the results of the “second stage” regression of the two-stage least squares
models. The program impact estimate is .133629. In other words, the two-stage least squares
estimate is that program participation (i.e. switching from being a non-participant, P = 0, to a
participant P = 1) increases the probability that Y = 1 by 13.3629 percentage points. This is
remarkably close to the true impact of a 13.24 percentage point increase in the probability that
Y = 1 as a result of participation. It would seem that, in this example, the linear instrumental
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variables approach as implemented by two-stage least squares performed well. However, the reader
would do well to remember per the concerns and example presented in Lewbel et al. (2012) that
good performance by the linear probability model is not a guarantee.

We next turn to a maximum likelihood estimator for the system

Y ∗i = β0 + β1 · Pi + β2 · xi + ξYi

Pi = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

The general form for the likelihood for joint estimation is derived from the same basic logic as in
Case 1, only in this instance it is the outcome Yi that is explicitly treated as a binary choice variable
while program participation is treated as a continuous variable. The probability for the observed
outcome variable values {Yi, Pi} for individual i if their outcome is Yi = 1

Pr
(
Y = 1, ξCi |δ0, δ1, δ2, δ3, β0, β1, β2, ρ, σP

)
= Pr

(
Y = 1, Pi − δ0 − δ1 · xi − δ2 · z1i − δ3 · z2i|δ0, δ1, δ2, δ3, β0, β1, β2, ρ, σP

)
=

∫ β0+β1·Pi+β2·xi

−∞
f (w,Pi − δ0 − δ1 · xi − δ2 · z1i − δ3 · z2i) dw

For the Yi = 0 case the relevant probability would be

Pr
(
Y = 0, ξCi |δ0, δ1, δ2, δ3, β0, β1, β2, ρ, σP

)
= Pr

(
Y = 0, Pi − δ0 − δ1 · xi − δ2 · z1i − δ3 · z2i|δ0, δ1, δ2, δ3, β0, β1, β2, ρ, σP

)
∫ ∞
β0+β1·Pi+β2·xi

f (w,Pi − δ0 − δ1 · xi − δ2 · z1i − δ3 · z2i) dw

What remains for joint estimation is to make an explicit assumption regarding the functional form
of the joint density f(·, ·). Once again, the bivariate normal probability density has proven to be an
extremely popular choice for f(·, ·). This is the key assumption behind many maximum likelihood
estimation routines for this framework (continuous endogenous explanatory variable and a binary
outcome of interest) available in many commercial statistical programs. For instance, it is the key
assumption behind STATA’s ivprobit command.

Results from maximum likelihood estimation of this system with ivprobit are provided in
Output 6.28. Since the outcome equation is a probit model, the impact estimate is really the
marginal effect of program participation on the probability that Y = 1. Computation of this
marginal effect is performed manually following estimation. The program impact estimate emerging
from this exercise is .1367863, which is quite close to the true value of .1324. The statistical
significance of the parameter estimate for /athrho is tantamount to a test of whether the equation
errors {ξYi , ξCi } are indeed correlated. This parameter is significant, with a z-statistic of -4.13 and
an associated p-value of 0.000, indicating error correlation.

There is a tradition for two-step estimation of this model. A particularly popular approach was
proposed by Rivers and Vuong (1988) and further explored by Bollen et al. (1995).22 Essentially,
the three steps involved are:

1. Estimate the participation equation by least squares regression of Pi on xi, z1i and z2i;

22See as well Terza et. al. (2008) for a very useful discussion of two-step estimation in this context.
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2. Use the estimated model to get the predicted residuals P̂RESi = Pi− δ̂0− δ̂1 ·xi− δ̂2 ·z1i− δ̂3 ·z2i;

3. Perform logit regression of Yi on Pi, xi and P̂RESi .

This model has the benefit of simplicity in execution as well as a natural test of error correlation
based on the significance of the estimated coefficient on P̂RES in the second stage. We refer to this
as a “residual inclusion” estimator but it is also called a control function approach.

STATA Output 6.28 (6.2.do)

. ivprobit Y x (P=x z1 z2)

Fitting exogenous probit model

Iteration 0: log likelihood = -5741.0029
Iteration 1: log likelihood = -4160.7851
Iteration 2: log likelihood = -4122.031
Iteration 3: log likelihood = -4121.874
Iteration 4: log likelihood = -4121.874

Fitting full model

Iteration 0: log likelihood = -9563.0923
Iteration 1: log likelihood = -9556.4996
Iteration 2: log likelihood = -9554.6775
Iteration 3: log likelihood = -9554.6744
Iteration 4: log likelihood = -9554.6744

Probit model with endogenous regressors Number of obs = 10000
Wald chi2(2) = 2379.47

Log likelihood = -9554.6744 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

P .5983606 .1291341 4.63 0.000 .3452624 .8514587
x .5562321 .0140512 39.59 0.000 .5286922 .5837721

_cons .5346809 .0879501 6.08 0.000 .3623018 .70706

/athrho -.2449417 .0592906 -4.13 0.000 -.3611492 -.1287342
/lnsigma -.8748167 .0070711 -123.72 0.000 -.8886757 -.8609576

rho -.2401579 .055871 -.3462259 -.1280277
sigma .4169384 .0029482 .4111999 .422757

Instrumented: P
Instruments: x z1 z2

Wald test of exogeneity (/athrho = 0): chi2(1) = 17.07 Prob > chi2 = 0.0000

.

. replace P=0
(5813 real changes made)

.

. predict P0, pr

.

. replace P=1
(10000 real changes made)

.

. predict P1, pr

.

. g mx=P1-P0

.

. su mx

Variable Obs Mean Std. Dev. Min Max

mx 10000 .1367863 .0783594 2.86e-06 .2351975
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As developed by Rivers and Vuong (1988), this approach also relies on the joint normality of
the error terms {ξYi , ξCi }. The reason is admittedly perhaps not obvious. If one assumes that the
error terms {ξYi , ξCi } from

Y ∗i = β0 + β1 · Pi + β2 · xi + ξYi

Pi = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

are jointly normal, then an important property of joint normality that the Rivers and Vuong
approach exploits is that

ξYi = θ · ξCi + ηYi

where ηYi is also normally distributed. This means that the error term can be broken down addi-
tively (i.e. as a sum of terms) into a part explained by the other error term with which it is jointly
normally distributed (i.e. ξCi ) and a term unrelated to ξCi (i.e. ηYi ). Note that the correlation of
the two error terms {ξYi , ξCi } is captured through the term θ · ξCi .

This property of jointly normal variables is the basic motivation for the Rivers and Vuong (1988)
derivation of the residual inclusion estimator. There are three key threads to their approach:

1. ξYi = θ · ξCi + ηYi ;

2. all correlation between {ξYi , ξCi } is captured through the term θ · ξCi ;

3. the term ηYi is normally distributed.

For the purposes of estimating the outcome equation, the first two suggest that inclusion of ξCi
as a regressor (along with Pi and xi) should control for any correlation between {ξYi , ξCi } that
could render an endogenous variable. The third point, that ηYi is normally distributed, allows one
to motivate probit regression of the equation of interest. The only remaining detail is to use an
estimate of ξCi , P̂RESi , from the first stage least squares regression of program participation Pi on
xi, z1i and z2i.

Strictly speaking, the residual inclusion/control function approach is not really appropriate
in this application. The reason is that the estimator is motivated by a continuous endogenous
variable. We simply do not have a continuous endogenous variable (our endogenous variable,
program participation P , is binary). This has several implications. The predicted residuals from
the first stage regression simply are not continuous. This means, among other things, that they
are not actually normally distributed. More generally, they offer only the roughest, most choppy
proxy for the actual error term ξCi underlying what is actually the latent variable relationship (even
though under the control function/residual inclusion approach we effectively pretend that it is not)
driving observed program participation. It is thus likely that in many applications the predicted
first stage residuals from linear probability model estimation of the residuals of an endogenous
variable that is in fact binary will just prove too crude to support good model performance.

We also emphasize that this model is not identified by non-linearity alone. Exclusion restrictions
in the form of instruments that influence directly program participation P but not the outcome
of interest Y are required to estimate the model. Moreover, Bollen et al. (1995) find that decent
model performance (i.e. in our context reasonably reliable estimates of program impact) depends
on having strong first stage instruments and decent overall explanatory power to the first-stage
model determining the endogenous variable (with R2 values of at least .2 and preferably .3 or
more).

Outputs 6.29 and 6.30 report results from manual estimation of the two-step residual inclu-
sion estimator. The first stage is reported in Output 6.29. Despite the fact that participation is
binary and not continuous (and hence contrary to the assumption of the model) the remaining
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results are mostly reassuring. First, the instruments z1i and z2i are quite statistically significant
(with t-statistics of 17.50 and -20.47, respectively). Moreover, overall model explanatory power is
reasonable, with an R2 of 0.2858.

STATA Output 6.29 (6.2.do)

. * First Stage, manual residual inclusion

.

. reg P x z1 z2

Source SS df MS Number of obs = 10000
F( 3, 9996) = 1333.14

Model 695.526508 3 231.842169 Prob > F = 0.0000
Residual 1738.37659 9996 .173907222 R-squared = 0.2858

Adj R-squared = 0.2856
Total 2433.9031 9999 .243414651 Root MSE = .41702

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.119577 .0020847 -57.36 0.000 -.1236635 -.1154906
z1 .0365565 .0020887 17.50 0.000 .0324622 .0406508
z2 -.0428673 .0020938 -20.47 0.000 -.0469716 -.0387629

_cons .5791768 .0041704 138.88 0.000 .5710019 .5873517

.

. predict Phat
(option xb assumed; fitted values)

.

. g Pres=P-Phat

Output 6.30 provides the second stage results. The program impact estimate is based on the
estimation of the marginal effect of participation on the probability that Y = 1 using the fitted
model. The impact estimate is .1373265, which is in the near neighborhood of the truth. The
predicted residual Pres is significant, with a t-statistic of -4.10. This result is indicative of error
correlation between the outcome of interest equation and the program participation equation.

There is a two-step version of the STATA command ivprobit, invoked with the option
twostep. It is not exactly the basic residual inclusion approach a la Rivers and Vuong (1988) but
is instead based mainly on Newey (1987), a related estimation approach the details of which are
not important in present circumstances. The command syntax would, in this case, be

ivprobit Y x (P=x z1 z2), twostep

Essentially, it relies on a motivating logic similar to the Rivers and Vuong (1988) approach.
Finally, we address Case 3:

Y ∗i = β0 + β1 · Pi + β2 · xi + ξYi

P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

we have a latent outcome of interest and latent program participation, indicating that the observed
outcome of interest and observed program participation are limited dependent in nature. As we
have done thus far in this discussion, we assume that {Yi, Pi} are binary in nature.

Clearly, one potential strategy for this model would be linear instrumental variables. We have
effectively already considered this in Outputs 6.26 and 6.27. As we saw, in this example at least it
produced a fairly good estimate of program impact.
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STATA Output 6.30 (6.2.do)

. * Second stage, manual residual inclusion

.

. probit Y P x Pres

Iteration 0: log likelihood = -5741.0029
Iteration 1: log likelihood = -4153.322
Iteration 2: log likelihood = -4113.6263
Iteration 3: log likelihood = -4113.4563
Iteration 4: log likelihood = -4113.4563

Probit regression Number of obs = 10000
LR chi2(3) = 3255.09
Prob > chi2 = 0.0000

Log likelihood = -4113.4563 Pseudo R2 = 0.2835

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P .616391 .1397584 4.41 0.000 .3424697 .8903123
x .5730003 .0201965 28.37 0.000 .5334159 .6125848

Pres -.5933588 .1447704 -4.10 0.000 -.8771036 -.309614
_cons .5508058 .082158 6.70 0.000 .3897791 .7118326

.

. replace P=0
(5813 real changes made)

.

. predict P0
(option pr assumed; Pr(Y))

.

. replace P=1
(10000 real changes made)

.

. predict P1
(option pr assumed; Pr(Y))

.

. g mx=P1-P0

.

. su mx

Variable Obs Mean Std. Dev. Min Max

mx 10000 .1373265 .0830362 5.13e-06 .2420664

A general form for the basic full information maximum likelihood based approach23 to estimating
this system is a straightforward extension of what we have developed thus far. We now have four
possible combinations of the outcome and participation variables. First, it could be that both equal
1 (i.e. Yi = Pi = 1). This would lead to the general probability

Pr (Y = 1, P = 1|δ0, δ1, δ2, δ3, β0, β1, β2, ρ) =

=

∫ β0+β1·Pi+β2·xi

−∞

∫ δ0+δ1·xi+δ2·z1i+δ3·z2i

−∞
f (w, g) dgdw

where we now have double integration
∫ ∫

. For {Yi = 0, Pi = 1}, the probability would be

Pr (Y = 0, P = 1|δ0, δ1, δ2, δ3, β0, β1, β2, ρ) =

23We are unaware of a limited information maximum likelihood approach to estimation of this system, but that is
probably more of an indication of our ignorance than anything else.
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=

∫ ∞
β0+β1·Pi+β2·xi

∫ δ0+δ1·xi+δ2·z1i+δ3·z2i

−∞
f (w, g) dgdw

For {Yi = 1, Pi = 0} we have

Pr (Y = 1, P = 0|δ0, δ1, δ2, δ3, β0, β1, β2, ρ) =

=

∫ β0+β1·Pi+β2·xi

−∞

∫ ∞
δ0+δ1·xi+δ2·z1i+δ3·z2i

f (w, g) dgdw

Finally, for {Yi = 0, Pi = 0} the probability is

Pr (Y = 0, P = 0|δ0, δ1, δ2, δ3, β0, β1, β2, ρ) =

=

∫ ∞
β0+β1·Pi+β2·xi

∫ ∞
δ0+δ1·xi+δ2·z1i+δ3·z2i

f (w, g) dgdw

The probability of the individual’s observed outcomes {Yi, Pi} is then

Pr (Yi, Pi|δ0, δ1, δ2, δ3, β0, β1, β2, ρ)

= (Pr (Y = 1, P = 1|δ0, δ1, δ2, δ3, β0, β1, β2, ρ))(Yi·Pi)

· (Pr (Y = 0, P = 1|δ0, δ1, δ2, δ3, β0, β1, β2, ρ))((1−Yi)·Pi)

· (Pr (Y = 1, P = 0|δ0, δ1, δ2, δ3, β0, β1, β2, ρ))(Yi·(1−Pi))

· (Pr (Y = 0, P = 0|δ0, δ1, δ2, δ3, β0, β1, β2, ρ))((1−Yi)·(1−Pi))

The overall likelihood is then simply the product of the individual probabilities

Pr (Yi, Pi|δ0, δ1, δ2, δ3, β0, β1, β2, ρ)

for each of the i = 1, ..., N individuals in the sample.
What remains for full information maximum likelihood estimation is simply to make some

assumption about the density f(·, ·). A common assumption is, unsurprisingly, bivariate normality.
This gives rise to a model known as the bivariate probit.

In Output 6.31 we present results from the estimation of the bivariate probit in STATA via
the biprobit command. As with the ivprobit command the outcome equation is modelled
effectively by probit (specifically, the equivalent to probit arising from the bivariate normal dis-
trution). 24 Therefore, formal program impact must be computed with marginal effects from the
fitted model. The estimate of program impact so computed is .1381713, which is not far from the
truth. Finally, the z-statistic on /athrho is -4.63, with a corresponding p-value of 0.000. This is
indicative of a significant underlying bivariate correlation ρ and hence correlation between {ξYi , ξCi }.

Thus far, we have introduced three limited dependent variable model scenarios for which one
might wish to pursue instrumental variables estimation of program impact. In each we considered
linear instrumental variables. We then explored maximum likelihood approaches. Generally this
included both full information joint estimation of the output and program impact equations and
multiple stage limited information estimation. To operationalize the maximum likelihood approach,
some assumption about the distribution of the error terms in the two equations must be made. We
focused on joint normality. It is probably the most popular distributional assumption in this setting
and involves (relatively) analytically simple likelihood functions.

24The participation equation is modelled similarly.
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STATA Output 6.31 (6.2.do)

. * Biprobit

. biprobit (Y= x P) (P=x z1 z2)

Fitting comparison equation 1:

Iteration 0: log likelihood = -5741.0029
Iteration 1: log likelihood = -4160.7851
Iteration 2: log likelihood = -4122.031
Iteration 3: log likelihood = -4121.874
Iteration 4: log likelihood = -4121.874

Fitting comparison equation 2:

Iteration 0: log likelihood = -6798.6892
Iteration 1: log likelihood = -5106.9076
Iteration 2: log likelihood = -5102.731
Iteration 3: log likelihood = -5102.7308

Comparison: log likelihood = -9224.6048

Fitting full model:

Iteration 0: log likelihood = -9224.6048
Iteration 1: log likelihood = -9215.0515
Iteration 2: log likelihood = -9213.1451
Iteration 3: log likelihood = -9213.144
Iteration 4: log likelihood = -9213.144

Seemingly unrelated bivariate probit Number of obs = 10000
Wald chi2(5) = 4473.88

Log likelihood = -9213.144 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Y
x .5566868 .0134387 41.42 0.000 .5303474 .5830262
P .6019772 .1124713 5.35 0.000 .3815375 .8224169

_cons .5207007 .0801426 6.50 0.000 .3636241 .6777773

P
x -.4155855 .0088425 -47.00 0.000 -.4329165 -.3982545

z1 .1265757 .0072732 17.40 0.000 .1123204 .140831
z2 -.1492417 .007365 -20.26 0.000 -.1636769 -.1348066

_cons .272101 .0144362 18.85 0.000 .2438066 .3003954

/athrho -.3623361 .0782835 -4.63 0.000 -.515769 -.2089031

rho -.34727 .0688428 -.4744279 -.2059164

Likelihood-ratio test of rho=0: chi2(1) = 22.9216 Prob > chi2 = 0.0000

. replace P=0
(5813 real changes made)

. predict P0, pmarg1

. replace P=1
(10000 real changes made)

. predict P1, pmarg1

.

. g mx=P1-P0

.

. su mx

Variable Obs Mean Std. Dev. Min Max

mx 10000 .1381713 .0786861 2.98e-06 .2365768

The maximum likelihood models involving joint normality that we considered generally per-
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formed fairly well from the standpoint of delivering estimates of program impact in the near neigh-
borhood of the truth. However, it must be stressed that the simulated examples in STATA do-files
6.1.do and 6.2.do involved error terms in the outcome and participation equations that were jointly
normal. Recall that the system of equations is

Yi = β0 + β1 · Pi + β2 · xi + β3 · µi + εYi

β0 + β1 · Pi + β2 · xi + ξYi

and
P ∗i = β1 − γ0 − γ1 · xi − γ2 · z1i − γ3 · z2i − γ4 · µi − εCi

= δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

We thus have the error terms
ξYi = β3 · µi + εYi

ξCi = −γ4 · µi − εCi
In the simulated example µi, ε

Y
i and εCi were drawn from the normal distribution. Since linear

sums of normally distributed random variables are themselves normally distributed ξYi and ξCi are
normally distributed as well. Moreover, since µi appears in both ξYi and ξCi they are correlated. In
other words, the error terms in our simulation samples were indeed jointly normally distributed.

However, there is no real reason to believe that the error terms are necessarily jointly normally
distributed in real world samples. In fact, in many applications is seems somewhat implausible.
Suppose, for instance, the program is a weight control initiative and the outcome is a binary
indicator of whether an individual is overweight or not. It is easy to imagine that at least a
substantial minority of the population falls into extreme categories such as these, regardless of
their observed characteristics such as age, race, income, etc., such as:

• Those who will always elect to enroll in the program and will always avoid being overweight
(implying a very large positive value of ξC but a very large negative value for ξY );

• Those who will always elect to enroll in such programs but never avoid being overweight
(implying a very large positive value for both ξC and ξY );

• Those who will never enroll in such a program but always be overweight (implying a large
negative value for ξC and a large positive value for ξY ).

The point is that in the real world it is likely that for many applications at least a significant
minority of the population or any representative sample from it is characterized by pronounced
unobserved behavioral tendencies regarding program participation and the outcome of interest.

However, this is exactly the sort of behavior that the normal distribution is not particularly
suitable for modelling: the normal distribution tends to be a poor framework for capturing “ex-
treme” behavior. For instance, under the normal distribution roughly 68 percent of the population
(or any reasonable sized representative sample from it) has a value for a normally distributed
characteristic within one standard deviation of the mean, while over 99 percent have a value for
that characteristic within three standard deviations of the mean.25 It is not really a distribution

25This is sometimes referred to as the “68-95-99.7” rule. If W is normally distributed with mean µ and standard
deviation σ,

Pr (µ− σ ≤W ≤ µ+ σ) ≈ 0.683

Pr (µ− 2 · σ ≤W ≤ µ+ 2 · σ) ≈ 0.955

Pr (µ− 3 · σ ≤W ≤ µ+ 3 · σ) ≈ 0.997

where ≈ means “equals approximately”.
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for capturing behavioral tendencies that are extreme (for instance, in the sense of involving large
positive or negative error values that overwhelm any role for observed characteristics) but not rare
in the population.

To make this a bit more concrete, in Figure 6.8 we plot a typical bivariate normal density.
Specifically, we plot the joint probabilities for various values of two random variables, ξY and
ξC , that we assume together follow a bivariate normal distribution. Notice that this distribution
is has a sharply defined summit. This summit occurs at the mean values for ξY and ξC . The
height of the surface (along the vertical axis labelled Pr(ξY , ξC)) represents the joint probability
of the combination of any particular combination of values of ξY and ξC along the horizontal axes
occurring. Notice that the joint probability of combinations of ξY and ξC falls quickly as we move
away from the summit of the probability surface at the means of ξY and ξC . What this means
basically is that values away from the means of ξY and ξC have a rapidly declining probability of
occurring, ruling out “extreme” behavior for even a significant minority of the population. Since
this distribution only has one peak (i.e. it is “unimodal”) it also rules out distinct concentrations of
extreme types of individuals. This distribution simply is not a good vehicle for capturing the likely
profile of unobserved types that might emerge in the context of the just-discussed weight control
initiative.

A better representation of a population with different pronounced unobserved types is found in

Figure 6.8: A Bivariate Normal Density
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Figure 6.9. This once again simply plots the joint probabilities for various values of two random
variables, ξY and ξC , but in this case the surface has multiple peaks. In other words, it is “multi-
modal”. In this Figure, there are four distinct peaks. Once can think of each peak as representing
one pronounced “type” within the population.

A recent paper (Guilkey and Lance 2014) considers the performance of various estimators of
program impact when the outcome and program participation are both binary. Specifically, the
authors perform Monte Carlo experiments under which they apply these various estimators of
program impact (some of which you have just learned about) to the behavioral framework

Y ∗i = β0 + β1 · Pi + β2 · xi + ξYi

and
P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

This is, of course, Case 3 from our discussion. Each Monte Carlo experiment involves a particular
combination of features for the sample stemming from this behavioral model: the number of obser-
vations, the commonness Y and P (e.g. the percentage of the sample that experiences the outcome
Y = 1 or participates in the program), the explanatory strength of the instruments {z1, z2}, the
distribution of the error terms {ξY , ξC}, etc. For the last of these characteristics they consider

Figure 6.9: A Multimodal Density: Different Unobserved Types
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cases where {ξY , ξC} are jointly normally distributed and cases where they are not. For each
combination of characteristics they drew either 500 or 1,000 samples (called “Monte Carlo repli-
cations”) satisfying those characteristics and estimated program impact with each of the impact
evaluation estimators considered. The mean absolute deviation of the estimate of program impact
from true impact is then calculated for each impact evaluation estimator across the replications for
that experiment.

This design thus allows the authors to consider, for instance, how the relative performance of
the various impact evaluation estimators differs between the cases where the error terms are jointly
normal and where they are not jointly normal. Guilkey and Lance (2014) find that models that
rely on an assumption of joint normality perform relatively well when errors are indeed jointly
normal, but their relative performance suffers when they are not. Put differently, when you adopt
an impact evaluation estimator that assumes joint normality, you really are betting that the error
terms are indeed jointly normal.

This finding is not that shocking and in fact has many antecedents (e.g. Mroz 1999 or even
the debates about the appropriate manner to model health care in the course of the RAND Health
Insurance Experiment). The impetus to explore semi- and non-parametric estimators in other
contexts was partly driven by a sense that more parametric models might not be very robust
to violations of their assumptions. This is a sentence worth dissecting. By parametric models we
typically mean models that involve somehow a specific distributional assumption, such as normality.
Semi-parametric models are models that involve few or weak distributional assumptions. Non-
parametric models eschew specific distributional assumptions altogether.

When we say that parametric models might not be very robust to the violations of their as-
sumptions, we mean that model performance (in terms, for instance, of mean absolute deviation
or some other measure of the accuracy of estimates in terms of true population values) might be
poor when the sample did not arise from the assumptions inherent in the distribution assumed. For
instance, the normal distribution involves a skewness of 0 and kurtosis of 3. If the true population
data generating process behind the variable for which we assume a normal distribution involves a
distribution with a skewness that is actually more than zero, for instance, then the sample from that
population has values of that variable that in their distribution violate a key assumption behind the
normal distribution. The basic fear then is that the performance of estimators that involve specific
distributional assumptions such as normality might not be very good when those assumptions are
violated by the data.

Interestingly, Guilkey and Lance (2014) find that a semi-nonparametric estimator of program
impact performs relatively well in their experiments regardless of the actual specific distribution of
{ξY , ξC}. This flexible estimator was first proposed by Heckman and Singer (1984) in the context of
hazard models but adopted to joint estimation of equations (such as the outcome and participation
equations in the present discussion) by work such as Guilkey and Mroz (1992).26

To get some idea of how this works, we begin with the system

Y ∗i = β0 + β1 · Pi + β2 · xi + µYi + εYi

and
P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + µCi + εCi

where the µs and εs are not observed. εYi and εCi are independently distributed, but µY and µC

might be correlated. For concreteness, we retain the assumption that Yi and Pi are binary in nature.

26Mroz (1999) examines the performance of this estimator in a slightly different context through a series of similar
Monte Carlo experiments.
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The next step involves making some distributional assumption for the errors εYi and εCi . Since
they are independently distributed, it actually isn’t essential to make the same distributional as-
sumption (though it might look odd if we decided to model one binary model as probit and the
other as logit). In this chapter we have thus far focused on the assumption of normality, so for
variety we will instead assume that the εs are each the difference of two Type-I Extreme value
distributed random variables. As we have learned, the cumulative density for such variables is
given by the logistic function.

Specifically, individual i’s probability for their observed outcome Yi and program participation
Pi is

Pr
(
Yi, Pi|β0, β1, β2, δ0, δ1, δ2, δ3, µYi , µCi

)

=

 exp
(
β0 + β1 · Pi + β2 · xi + µYi

)
1 + exp

(
β0 + β1 · Pi + β2 · xi + µYi

)
Yi

·
(

1

1 + exp
(
β0 + β1 · Pi + β2 · xi + µYi

))(1−Yi)

·

 exp
(
δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + µCi

)
1 + exp

(
δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + µCi

)
Pi

·
(

1

1 + exp
(
δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + µCi

))(1−Pi)

Notice that this conditions on the unobservables µYi and µCi in the same sense that it does the
unknown population parameters {β0, β1, β2, δ0, δ1, δ2, δ3}. The reason is that we cannot observe the
µs and control for them like we can observables like xi, z1i and z2i. However, we cannot exactly
estimate the µs like we can the βs or δs since the µs are individual-level unobservables, but we have
not assumed either that we have longitudinal data or that the µs are necessarily fixed with respect
to time (both of which are required for the dummy variable version of the fixed-effects estimator,
for instance).

The way that this semi-parametric estimator deals with the µs is to estimate a discrete ap-
proximation to their true joint distribution and then integrates out with respect to them. This is
another sentence that merits dissection. First, the semi-parametric estimator involves a discrete
approximation to their joint distribution, meaning that while the µs might be able to take on an
infinite combination of values and hence have a smooth, continuous joint distribution, this esti-
mator discretely approximates it with a few mass points and probabilities of those mass points
occurring (in other words, it assumes that they can take on only a finite number of combinations
in values, in the hope that that will provide a decent approximation of the truth). The advantage
of this approach is that no particular assumption is made about the joint distribution of the µs.
Rather, the data are allowed to dictate an approximation as part of the estimation process. We
then “integrate out” over the µs by allowing transforming every individual’s probability for their
observed {Yi, Pi} into a weighted sum based on the various discrete values that the µs can take on,
with the weights being the probabilities associated with those various values of µ.

Specifically, the individual’s contribution is now

Pr
(
Yi, Pi|β0, β1, β2, δ0, δ1, δ2, δ3, µY2 , ..., µYK , µC2 , ..., µCK , θ2, ...., θK

)
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=
K∑
k=1

πk · Pr
(
Yi, Pi|β0, β1, β2, δ0, δ1, δ2, δ3, µY = µYk , µ

C = µCk

)
where

πk = Pr
(
µY = µYk , µ

C = µCk

)
=

exp (θk)

1 +
∑K
j=2 exp (θj)

for k = 2, ...,K and

π1 = Pr
(
µY = 0, µC = 0

)
=

1

1 +
∑K
j=2 exp (θj)

The normalization that µs at one of the mass points equal 0 (i.e. that µY1 = µC1 = 0) is standard
and necessary to identify separately the constant terms β0 and δ0. If we have a sample of N
individuals along the lines we have considered this far, the likelihood function is then a product of
the individual probabilities for the observed outcomes Yi and Pi:

L
(
β0, β1, β2, δ0, δ1, δ2, δ3, µ

Y
2 , ..., µ

Y
K , µ

C
2 , ..., µ

C
K , θ2, ...., θK

)

=
N∏
i=1

Pr
(
Yi, Pi|β0, β1, β2, δ0, δ1, δ2, δ3, µY2 , ..., µYK , µC2 , ..., µCK , θ2, ...., θK

)
which is maximized with respect to {β0, β1, β2, δ0, δ1, δ2, δ3, µY2 , ..., µYK , µC2 , ..., µCK , θ2, ...., θK}.

The number of mass points K is also determined by the data. A variety criteria have been pro-
posed for determining the number of mass points K (see, for instance, Mroz 1999) but most frankly
amount to the following: keep adding mass points and re-maximizing the likelihood until adding
further mass points fails to improve the maximized likelihood value significantly.27 Surprisingly,
this model often performs quite well even with few mass points. Why this is so is not clear.

The main advantage of this semi-parametric estimator, and the likely key to its success, is its
flexibility. By imposing no particular assumption about the joint distribution of the µs, it can
accommodate all kinds of possibilities, including the kinds of extreme behavior discussed earlier (it
just implies large positive or negative mass point values). Currently, this estimator is not supported
in STATA (though one of the authors of this manual is working on a command).

Nonetheless, we present estimates from this semi-parametric estimator applied to the present
numerical example. Specifically, we jointly estimate the outcome and program participation equa-
tions with three points of support. The basic parameter estimates are presented in Table 6.1.28

First, from the table title, this semi-parametric estimator is often referred to as the “Discrete Factor
Model”. Table 6.1 presents results from both the outcome and program participation equations.
One set of mass points is normalized to zero (in order to separately identify the mass points from
the constant). The estimates of the second and third mass points are positive for the outcome
equation (at 1.45849 and 3.37042, respectively) while both for the program equation are negative.

27The differences between approaches generally involve the method of determining whether the likelihood has
improved “significantly” or not, since some minuscule improvement is nearly guaranteed with the addition of more
mass points.

28As mentioned, this model is not supported in STATA. The results presented are from a Fortran program that
estimates this model. Since this is not STATA output, the results are placed in tables.
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Table 6.1. The Discrete Factor Model

Outcome Equation Participation Equation

Estimate Std. Error Estimate Std. Error

Constant -1.33676 1.6496 2.98458 0.8503
x 1.11966 0.2198 -1.01545 0.3523
z1 0.30962 0.1130
z2 -0.36407 0.1326
P 1.18058 0.4660
Mass Point 1 0.00000 (Fixed) 0.00000 (Fixed)
Mass Point 2 1.45849 0.9816 -2.97451 1.3692
Mass Point 3 3.37042 2.9642 -5.12749 3.1763

In Table 6.2 we present the estimated probabilities associated with the mass points. Finally, the
estimated program impact is .1543151, which is not far from the truth. Note that the errors are in
fact jointly normally distributed. Models (such as the bi-probit) that assume joint normality (i.e.
are based on the correct distributional assumption) should exhibit somewhat superior performance.
Yet the discrete factor model estimate of program impact is remarkably close to true impact. The
results from Guilkey and Lance (2014) suggest that the model would likely far outperform models
based on an assumption of joint normality when errors are not, in fact, jointly normal.

Table 6.2. Mass Point Probabilities

Estimate Std. Error Probability

Mass Point 1 0.00000 (Fixed) 0.31095844
Mass Point 2 0.61258 0.8048 0.57377612
Mass Point 3 -0.99242 1.3839 0.11526545

6.1.3 Testing

We now briefly discuss testing in the instrumental variables setting.29 Essentially, these are tests of
whether the instrumental variables model is correctly specified (e.g. whether the instruments are
appropriately excluded from the equation of interest, whether they really explain the endogenous
variable, etc.). As such they are typically referred to as specification tests.30 There are basically
three types of tests that we consider:

1. Tests of the endogeneity of the allegedly endogenous variables;

2. Tests of the “strength” of the instrument(s) as determinants of variation in the endogenous
variable;

3. Tests of whether the instruments indeed satisfy the properties of instruments.

We briefly discuss each type of test. Our focus is on the linear instrumental setting (because it is
in the linear setting that the most work has been done on testing) but also discuss non-linear tests
where applicable.

29A much-consulted resource for this general topic during one of the author’s graduate school days was Dow (2001),
the memory of which likely heavily informs elements of the discussions to follow. Apologies in advance to Dr. Dow
if there are any phrases herein for which the author’s memory of Dow (2001) from graduate school days was precise:
any failure of citation is unintentional. The reader is advised to seek out and read Dow (2001) for a more thorough
treatment of this subject.

30Specification tests have been developed for other sorts of models as well.
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We begin with testing for the most basic assumption motivating the instrumental variables
model (as well as almost every other quasi-experimental estimator of program impact): that pro-
gram participation is endogenous. Once again, we use the system from the first subsection to
organize our thinking:

Yi = β0 + β1 · Pi + β2 · xi + β3 · µi + εYi

= β0 + β1 · Pi + β2 · xi + ξYi

and
P ∗i = β1 − γ0 − γ1 · xi − γ2 · z1i − γ3 · z2i − γ4 · µi − εCi

= δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi

Tests of endogeneity tend to assume that the instruments (z1i and z2i) are validly excluded and
significant predictors of the potentially endogenous variable. In other words, they tend to assume
that instrumental variables methods such as two-stage least squares will consistently estimate β1.

An obvious possibility from the last Chapter is a Hausman-type test. As explained in Chapter 5,
Hausman tests compare a consistent (i.e. consistent whether program participation Pi is endogenous
or not) but less efficient estimator with a more efficient estimator that would not be consistent if
Pi was indeed endogenous. For instance, two-stage least squares is a consistent estimator of β1
regardless of whether Pi is endogenous or not (the consistency of two-stage least squares does not
depend on Pi and ξYi actually being correlated). Of course, it is only consistent if the exclusion
restrictions are valid and the excluded instruments are significant predictors of z1i and z2i, hence
the statement in the preceding paragraph that tests of the endogeneity of Pi tend to assume that the
assumed instrumental variables specification is correct, at least so far as the excluded instruments
are concerned. Two-stage least squares is less efficient than simple regression of Yi on Pi and
xi, because two-stage least squares involves additional sampling variation from the “first-stage”
regression. If Pi is exogenous (i.e. independent or mean independent of ξYi ) both two-stage least
squares and the simple regression of Yi on Pi and xi should yield consistent, and hence presumably
similar, estimates of β1. However, if Pi and ξYi are correlated, then there should be large differences
in the estimates of β1 provided by two-stage least squares (which would be consistent under this
circumstance) and regression of Yi on Pi and xi (which would not be consistent).

The intuition behind the test is perhaps best understood by referring back to the simplistic
Hausman statistic that we discussed in Chapter 5:(

β̂C1 − β̂E1
)2

ˆvar
(
β̂C1

)
− ˆvar

(
β̂E1

)
where β̂C1 and β̂E1 are the estimates of β1 emerging, respectively, from the consistent and efficient
models. ˆvar(β̂C1 ) and ˆvar(β̂E1 ) are the respective variance estimates from the two models. If Pi is
not endogenous (i.e. not correlated with ξYi ) then β̂C1 and β̂E1 should be similar because both are
consistent and the test statistic, which is based on their difference, should be small, leading us to
accept a null hypothesis (H0) of Pi being exogenous. If the estimates of β1 are very different, this
is evidence that simple regression is potentially inconsistent due to endogeneity. The test statistic
would have a large value and lead us to reject the null hypothesis in favor of the alternative
hypothesis (Ha). The differences in the estimates of β1 are normalized by the differences in the
variances of the two estimates to correct for differences in the estimates that one might expect
simply due to the superior efficiency of the efficient estimator.

Remember, the validity of this test rests entirely on the assumption that two-stage least squares
is consistent regardless of whether Pi is endogenous or not. That assumption in turn rests on the
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instruments being correctly specified. In our context, this means that z1i and z2i are legitimately
excluded from the outcome equation and uncorrelated with ξYi .

An example of this based on the “linear” circumstances of STATA do-file 6.1.do is offered in
Outputs 6.32-6.34. Once again, conducting a Hausman test in STATA involves in essence con-
structing the components of the test and then conducting it with the hausman command. Output
6.32 presents results from estimation of the consistent model and the storing of the results, and
Output 6.33 does the same for the efficient model. Finally, Output 6.34 presents results from the
Hausman test itself. The test statistic value is 35.51, which leads us to reject the null hypothesis
that two-stage least squares and the simple regression model provide the same estimates. Notice
that, unlike the simplistic test statistic where we considered only β1 (the coefficient on Pi) in Output
6.34 the coefficients on both Pi and xi are tested.

STATA Output 6.32 (6.1.do)

. * A "consistent" model

. ivregress 2sls Y x (P=x z1 z2)

Instrumental variables (2SLS) regression Number of obs = 10000
Wald chi2(2) = 9487.14
Prob > chi2 = 0.0000
R-squared = 0.4727
Root MSE = 3.6031

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P 2.108621 .3202348 6.58 0.000 1.480972 2.736269
x 2.001747 .042218 47.41 0.000 1.919001 2.084493

_cons 1.892261 .1892769 10.00 0.000 1.521285 2.263237

Instrumented: P
Instruments: x z1 z2

.

. estimates store c1

STATA Output 6.33 (6.1.do)

* An "efficient" model
. reg Y P x

Source SS df MS Number of obs = 10000
F( 2, 9997) = 4968.55

Model 122730.14 2 61365.0699 Prob > F = 0.0000
Residual 123469.862 9997 12.3506914 R-squared = 0.4985

Adj R-squared = 0.4984
Total 246200.001 9999 24.6224624 Root MSE = 3.5144

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P .263087 .0813785 3.23 0.001 .1035687 .4226052
x 1.781695 .0200693 88.78 0.000 1.742355 1.821035

_cons 2.963129 .0588625 50.34 0.000 2.847747 3.078512

.

. estimates store e1
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There are a few variations on this approach. For instance, one could estimate the first-stage
program participation equation by ordinary least squares, obtain the predicted participation P̂i
and then regress Yi on Pi, P̂i and xi. A significance test of the estimated coefficient on P̂i is a
kind of endogeneity test: it will be significant only if Pi is endogenous, in which case the estimated
coefficient on P̂i represents the difference between the coefficient on Pi and true program impact
β1. Another version of this test uses the first stage predicted residuals instead of P̂i, but otherwise
follows the same logic. Finally, one could simply regress Yi on Pi, z1i, z2i and xi. Assuming that
the instruments z1i and z2i are validly excluded, a test on the significance of these instruments is
an endogeneity test. Notice that every one of these tests still requires the assumption that the
instruments z1i and z2i are indeed legitimately excludable from the output equation and uncorre-
lated with ξYi . A big caveat about these tests is that they often have fairly low power to reject
the null hypothesis of exogeneity. What that means is that failing this test and rejecting the null
hypothesis of exogeneity probably really means something, while accepting the null hypothesis of
exogeneity may not be fully reassuring that Pi really is exogenous.

STATA Output 6.34 (6.1.do)

. * Hausman test

. hausman c1 e1, equations(1:1)

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
c1 e1 Difference S.E.

P 2.108621 .263087 1.845534 .3097222
x 2.001747 1.781695 .2200516 .0371427

b = consistent under Ho and Ha; obtained from ivregress
B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)´[(V_b-V_B)ˆ(-1)](b-B)
= 35.51

Prob>chi2 = 0.0000

In the limited dependent variable setting the assumption of joint normality frequently provides
a natural test of correlation because these methods typically generate an estimate of the correlation
ρ. These were generally discussed with the estimation results for these models presented in the
last subsection. For instance, in the bivariate probit model ρ is directly estimated as part of the
full information maximum likelihood estimation process. These tests of course assume that joint
normality is an appropriate assumption regarding the joint distribution of {ξYi , ξCi }.

We now briefly discuss tests of instrument strength. As we mentioned earlier at the conclusion of
the discussion of linear instrumental variables, a series of prominent papers consider the performance
of linear instrumental when endogenous variables are only weakly correlated with the instruments
(i.e., in the context of our example to this point, when the variables z1i and z2i are only weakly
correlated with Pi). The general conclusion is that instrumental variables performs quite poorly,
providing potentially wildly biased and inconsistent estimates of program impact, with such weak
instruments.

Unfortunately, at this stage in the evolution of the literature on this subject, we can offer
more warning than guidance. Clear, widely agreed upon guidelines (for instance an acceptable
threshold level of significance for the instruments) have not really been established. For a linear
first stage, some have suggested an F-statistic threshold of 10 for a test of the joint significance of
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the instruments. Casual, unpublished experiments by one of the authors of this manual for a first
stage nonlinear binary model (e.g. logit regression of program participation Pi on the observed
exogenous characteristics x and the instruments z1i and z2i) and a binary outcome variable have
suggested a threshold of generally reliable performance with a joint significance χ2 statistic of
perhaps 35-50. However, there is no real consensus on this and the figures suggested may be quite
misleading outside of the context of the particular simulations from which they arose.

STATA Output 6.35 (6.1.do)

. * First stage of ``manual´´ two-stage least squares,

. * over-identified case

. * instrument significance test

. reg P x z1 z2

Source SS df MS Number of obs = 10000
F( 3, 9996) = 1333.14

Model 695.526508 3 231.842169 Prob > F = 0.0000
Residual 1738.37659 9996 .173907222 R-squared = 0.2858

Adj R-squared = 0.2856
Total 2433.9031 9999 .243414651 Root MSE = .41702

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.119577 .0020847 -57.36 0.000 -.1236635 -.1154906
z1 .0365565 .0020887 17.50 0.000 .0324622 .0406508
z2 -.0428673 .0020938 -20.47 0.000 -.0469716 -.0387629

_cons .5791768 .0041704 138.88 0.000 .5710019 .5873517

.

. test z1 z2

( 1) z1 = 0
( 2) z2 = 0

F( 2, 9996) = 363.97
Prob > F = 0.0000

We present examples of such tests in Outputs 6.35 and 6.36, which are based on the example in
STATA do-file 6.1.do. Output 6.35 provides the F-test for the first stage linear probability model
while Output 6.36 provides the χ2 statistic appropriate when the first stage is estimated by probit
or logit. In either case, the process is as simple as running the model and then typing

test z1 z2

As the reader can see, the test statistic values (of 363.97 in Output 6.35 and 631.92 in Output
6.36) are quite large. While there are no hard and fast guidelines for first stage instrument strength
sufficient to allay concerns about weak instruments, the authors would be unconcerned in the face
of these test statistic values.

Finally, we turn to tests of whether the instruments satisfy some the most important require-
ments for an instrument: a valid instrument must be statistically unrelated to the error term ξYi .
An immediate implication of this is that it must be legitimately excludable from the outcome equa-
tion (if not it would by exclusion be relegated to the error term ξYi and hence correlated with it).
One important limitation that holds for tests of instrument validity:

Such tests can only ever be performed with over-identified models.

In other words, the models must have more identification than is technically required for the model
to be estimable. Following discussions in the first subsection, in the linear setting this means
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that instrument validity can be tested only when the number of instruments/exclusion restrictions
exceeds the number of endogenous variables.

STATA Output 6.36 (6.1.do)

. * First stage of ``manual´´ two-stage least squares,

. * two instrument (over-identified) case

. * instrument significance test

. logit P x z1 z2

Iteration 0: log likelihood = -6798.6892
Iteration 1: log likelihood = -5124.7194
Iteration 2: log likelihood = -5107.5952
Iteration 3: log likelihood = -5107.5649
Iteration 4: log likelihood = -5107.5649

Logistic regression Number of obs = 10000
LR chi2(3) = 3382.25
Prob > chi2 = 0.0000

Log likelihood = -5107.5649 Pseudo R2 = 0.2487

P Coef. Std. Err. z P>|z| [95% Conf. Interval]

x -.7020947 .0161289 -43.53 0.000 -.7337067 -.6704827
z1 .2137315 .0125744 17.00 0.000 .1890861 .238377
z2 -.2508408 .0126878 -19.77 0.000 -.2757084 -.2259732

_cons .4584433 .0247126 18.55 0.000 .4100074 .5068792

.

. test z1 z2

( 1) [P]z1 = 0
( 2) [P]z2 = 0

chi2( 2) = 631.92
Prob > chi2 = 0.0000

However, in the limited dependent variable setting non-linearity could be the basis for over-
identification. In other words, a bivariate probit model with one endogenous variable and one
instrument is still overidentified because the model is nonlinear, and that non-linearity provides
identification in and of itself (whether such identification is confidence inspiring is another issue
altogether). Because these tests can only ever be performed in the context of overidentified models,
they are sometimes referred to as overidentification tests.

There are basically two types of overidentification test. One type assumes that one of the sources
of identification is correct, and then assesses the validity of the other source of identification by
examining whether the results (in our context, program impact estimates) generated with the latter
differ from those generated with only the former. For instance, if you have two instruments, you
test the validity of one of them on the assumption that the other is validly excluded from the
equation of interest and uncorrelated with the error term from that equation. The advantage of
that test is that it is immediately clear which source of identification is invalid. The disadvantage
is that this conclusion depends entirely on the assumption that one source of identification is valid.
The other type remains agnostic about which of the instruments is valid. Of course, if the test
statistic indicates instrument invalidity, it is not clear whether that finding is being driven by all
of the instruments (e.g. they are all invalid) or just some subset of them.

We begin with the former type of identification test (i.e. the type that assumes that one of the
instruments/exclusion restrictions is correct). One natural possibility would be a type of Hausman
test. If we assume that one of the instruments (z1i, both to fix ideas and because we must assume
that one instrument is valid for this test) is valid we could then compare a consistent estimator
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(using just z1i as an instrument) with an efficient estimator (using both z1i and z2i as instruments).
The latter is more efficient because of the greater capability to explain variation in the endogenous
variable Pi but will be inconsistent if z2i is correlated with ξYi . For instance, under two-stage least
squares, first stage predicted program participation P̂i will be correlated with ξYi if z2i and ξYi are
correlated, rendering the two-stage least squares estimator with both instruments inconsistent.

STATA Output 6.37 (6.1.do)

. * A "consistent" model

. ivregress 2sls Y x (P=x z1 ), first

First-stage regressions

Number of obs = 10000
F( 2, 9997) = 1718.26
Prob > F = 0.0000
R-squared = 0.2558
Adj R-squared = 0.2557
Root MSE = 0.4257

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.1192699 .0021278 -56.05 0.000 -.1234408 -.115099
z1 .0367036 .002132 17.22 0.000 .0325245 .0408826

_cons .5798419 .0042566 136.22 0.000 .571498 .5881857

Instrumental variables (2SLS) regression Number of obs = 10000
Wald chi2(2) = 9333.40
Prob > chi2 = 0.0000
R-squared = 0.4652
Root MSE = 3.6287

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P 2.361004 .4951864 4.77 0.000 1.390457 3.331552
x 2.03184 .061767 32.90 0.000 1.910779 2.152901

_cons 1.745816 .2896135 6.03 0.000 1.178184 2.313448

Instrumented: P
Instruments: x z1

.

. estimates store c2

We illustrate this tests in Outputs 6.37-6.39, which use the framework of the simulation example
in STATA do-file 6.1.do to perform this test. Output 6.37 provides estimates from the consistent
model that relies on z1i alone as an instrument. Output 6.38 does the same for the (comparatively)
efficient model that relies on both z1i and z2i as instruments.

In Output 6.39 the results of the Hausman test are reported. Now we are presented with a
relatively small test statistic value of 0.45, with an accompanying p-value of 0.7999. We would thus
accept the null hypothesis that z2i is a legitimate instrument (which is not a surprising conclusion
since it is a legitimate instrument by construction per the setup in STATA do-file 6.1.do).

We now move on to tests that do not rely on the assumption that some particular subset of the
instruments are valid. One classic test involves estimating the model

Yi = β0 + β1 · Pi + β2 · xi + ξYi

and
P ∗i = δ0 + δ1 · xi + δ2 · z1i + δ3 · z2i + ξCi
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by two-stage least squares. The predicted residuals ξ̂Yi are then calculated from the fitted model
and regressed on xi, z1i and z2i. N · R2, where N is the sample size and R2 is the coefficient of
determination from the regression of ξ̂Yi on xi, z1i and z2i, follows a χ2 distribution with degrees of
freedom equal to the degree of over-identification (i.e. the number of instruments employed beyond
what was required to achieve exact identification, which is 1 in this case) if all of the instruments
are valid. A large test statistic implies that at least one instrument is invalidly excluded. This is
sometimes referred to as a Lagrange Multiplier (or LM) test.

STATA Output 6.38 (6.1.do)

. * An "efficient" model

.

. ivregress 2sls Y x (P=x z1 z2), first

First-stage regressions

Number of obs = 10000
F( 3, 9996) = 1333.14
Prob > F = 0.0000
R-squared = 0.2858
Adj R-squared = 0.2856
Root MSE = 0.4170

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.119577 .0020847 -57.36 0.000 -.1236635 -.1154906
z1 .0365565 .0020887 17.50 0.000 .0324622 .0406508
z2 -.0428673 .0020938 -20.47 0.000 -.0469716 -.0387629

_cons .5791768 .0041704 138.88 0.000 .5710019 .5873517

Instrumental variables (2SLS) regression Number of obs = 10000
Wald chi2(2) = 9487.14
Prob > chi2 = 0.0000
R-squared = 0.4727
Root MSE = 3.6031

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P 2.108621 .3202348 6.58 0.000 1.480972 2.736269
x 2.001747 .042218 47.41 0.000 1.919001 2.084493

_cons 1.892261 .1892769 10.00 0.000 1.521285 2.263237

Instrumented: P
Instruments: x z1 z2

.

. estimates store e2

The generalized method of moments tradition has yielded a popular test of over-identification
based on something known as Hansen’s J statistic. First, let us recall our simplified generalized
method of moments framework. We have the following moment conditions for our overidentified
model:

g1 =
N∑
i=1

(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)

g2 =
N∑
i=1

z1i ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
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g3 =
N∑
i=1

xi ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)

g4 =
N∑
i=1

z2i ·
(
Yi − β̂0 − β̂1 · Pi − β̂2 · xi

)
In this over-identified model there are no estimate values {β̂0, β̂1, β̂2} such that g1 = g2 = g3 = g4 =
0. Instead, the goal of generalized method of moments estimation is to find estimates {β̂0, β̂1, β̂2}
such that g1, g2, g3 and g4 collectively are as close to zero as possible. We gave a very simplified
example of the actual objective function minimized in generalized method of moments estimation:

Q =
[
g1 g2 g3 g4

] 
w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4



g1
g2
g3
g4


= w1 · (g1)2 + w2 · (g2)2 + w3 · (g3)2 + w4 · (g4)2

In practice, generalized method of moments estimation employs more complex “optimal” weighting
matrices, but this gives the basic idea of the generalized method of moments objective function.

STATA Output 6.39 (6.1.do)

. * Hausman test

. hausman c2 e2, equations(1:1)

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
c2 e2 Difference S.E.

P 2.361004 2.108621 .2523834 .3777026
x 2.03184 2.001747 .0300928 .0450867

b = consistent under Ho and Ha; obtained from ivregress
B = inconsistent under Ha, efficient under Ho; obtained from ivregress

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)´[(V_b-V_B)ˆ(-1)](b-B)
= 0.45

Prob>chi2 = 0.7999

The Hansen J-statistic is basically just N · Q, which follows a χ2 distribution with degrees
of freedom equal to the number of moment conditions (4 in our example) minus the number of
parameters to be estimated (3 in our example). The null hypothesis (H0) is that the expected
value of the moment conditions is equal to zero, which we would reject in the face of a large J-
statistic. One intuitive explanation of Hansen’s J test is that if the instruments are valid, it should
be possible to get the moment conditions close to zero. Failure to do so is evidence that at least
one of them is not valid. However, one must be cautious with Hansen-J tests because other forms
of model mis-specification could potentially lead to a large test statistic. In Output 6.40 we provide
an example of a Hansen’s J test. The test statistic value is, at .461503, not particularly large, with
a correspondingly large p-value of 0.4969, which would lead us to accept the null hypothesis that
the instruments are valid.
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STATA Output 6.40 (6.1.do)

. * Gmm estimation

.

. ivregress gmm Y x (P=x z1 z2), first

First-stage regressions

Number of obs = 10000
F( 3, 9996) = 2308.62
Prob > F = 0.0000
R-squared = 0.2858
Adj R-squared = 0.2856
Root MSE = 0.4170

Robust
P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.119577 .0016949 -70.55 0.000 -.1228994 -.1162547
z1 .0365565 .0020593 17.75 0.000 .0325199 .0405931
z2 -.0428673 .0020369 -21.05 0.000 -.04686 -.0388746

_cons .5791768 .0041754 138.71 0.000 .5709922 .5873614

Instrumental variables (GMM) regression Number of obs = 10000
Wald chi2(2) = 9351.62
Prob > chi2 = 0.0000
R-squared = 0.4727

GMM weight matrix: Robust Root MSE = 3.6031

Robust
Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P 2.108944 .324678 6.50 0.000 1.472587 2.745301
x 2.001951 .0430581 46.49 0.000 1.917559 2.086344

_cons 1.893205 .1920943 9.86 0.000 1.516708 2.269703

Instrumented: P
Instruments: x z1 z2

.

. * The Hansen test

.

. estat overid

Test of overidentifying restriction:

Hansen´s J chi2(1) = .461503 (p = 0.4969)
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STATA Output 6.41 (6.2.do)

. biprobit (Y= x P z1 z2) (P=x z1 z2)

Fitting comparison equation 1:

Iteration 0: log likelihood = -5741.0029
Iteration 1: log likelihood = -4153.3347
Iteration 2: log likelihood = -4113.6203
Iteration 3: log likelihood = -4113.4501
Iteration 4: log likelihood = -4113.4501

Fitting comparison equation 2:

Iteration 0: log likelihood = -6798.6892
Iteration 1: log likelihood = -5106.9076
Iteration 2: log likelihood = -5102.731
Iteration 3: log likelihood = -5102.7308

Comparison: log likelihood = -9216.1809

Fitting full model:

Iteration 0: log likelihood = -9216.1809
Iteration 1: log likelihood = -9214.3282
Iteration 2: log likelihood = -9213.1495
Iteration 3: log likelihood = -9213.1285
Iteration 4: log likelihood = -9213.1283

Seemingly unrelated bivariate probit Number of obs = 10000
Wald chi2(7) = 4471.91

Log likelihood = -9213.1283 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Y
x .5583344 .0194147 28.76 0.000 .5202822 .5963866
P .6259885 .2395513 2.61 0.009 .1564766 1.0955

z1 -.0004073 .0122222 -0.03 0.973 -.0243623 .0235478
z2 .0021148 .0135981 0.16 0.876 -.024537 .0287667

_cons .5037425 .1703472 2.96 0.003 .1698681 .8376169

P
x -.4155645 .0088435 -46.99 0.000 -.4328975 -.3982316

z1 .1264503 .0073257 17.26 0.000 .1120923 .1408083
z2 -.1493738 .0074034 -20.18 0.000 -.1638841 -.1348635

_cons .2720356 .0144469 18.83 0.000 .2437202 .3003509

/athrho -.3784434 .1631063 -2.32 0.020 -.6981259 -.0587609

rho -.3613549 .1418083 -.6031769 -.0586934

Likelihood-ratio test of rho=0: chi2(1) = 6.10514 Prob > chi2 = 0.0135

.

. test [Y]z1 [Y]z2

( 1) [Y]z1 = 0
( 2) [Y]z2 = 0

chi2( 2) = 0.03
Prob > chi2 = 0.9844

Finally, in instances where both the outcome Y and the program participation variable P are
binary in nature, a sort of rough over-identification test is sometimes performed in the context of
joint estimation of the participation and outcome equations via full information maximum likeli-
hood estimation. Essentially, the test involves including all of the instruments as right-hand side
explanatory variables in both equations. The idea behind this is that program impact should al-
ready be identified by non-linearity (although this can be a shaky foundation the appropriateness
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of which often depends on making the right assumption about the joint distribution of {ξYi , ξCi }31)
and the instruments should therefore serve simply as controls for themselves in the output equa-
tion (as opposed to their role in the endogeneity test we just mentioned in the linear instrumental
variables setting).

A test of their significance in the outcome equation is thus a test of their legitimate exclusion
from the outcome equation. Output 6.41 reports results from estimation of the bi-probit model
using the simulation in STATA do-file 6.2.do as a departure point. In this case, the instruments
are included in both equations. Their z-statistics and p-values in the outcome equation (with a
z-statistic of -0.03 and p-value of 0.973 in the case of z1i and a z-statistic of 0.16 and p-value of
0.876 in the case of z1i) certainly do not suggest that individually they play a significant role in
the determination of the outcome Yi. Following bi-probit estimation their joint significance in the
outcome equation is tested. The resulting χ2 statistic is 0.03 with an accompanying p-value of
0.9844 suggests that they are not collectively significant direct determinants of Yi either.

6.1.4 Natural and Purposeful Social Experiments

We briefly discuss instrumental variables and experiments. The basic challenge we face in this
manual is that program participation is not randomly determined. In this and the last chapter,
we have considered quasi-experimental estimators that address the possibility that there are un-
observed determinants of the outcome of interest with which program participation is correlated.
If this is the case, then simple estimators of program impact, such as regression of the outcome
on program participation and its other observed determinants (xi in the running example of this
chapter) is biased and inconsistent.

Essentially, an instrument is a variable that allows us to concentrate on only some portion
of the variation in program participation not associated with the unobserved determinants of the
outcome. By concentrating on this “channel” of variation in program participation we are able to
estimate program impact without worrying about potential correlation of overall impact with such
unobservables.

In this sense, an instrument can be viewed as a kind of experiment. It provides a channel of
experimental variation in program participation in the sense that that channel is not associated
with unobserved determinants of the outcome.

Indeed, instrumental variables estimation often appeals to the basic concepts and terminology of
experiments. One important instance are cases where the natural course of human events gives rise
to particular institutional circumstances that generate a random channel of variation in program
participation. Such instances are frequently referred to as natural experiments.

John Snow’s cholera experiment can be viewed as a natural experiment. The outcome of interest
was cholera cases. The “program” was exposure to tainted water. Program participation was thus
driven by myriad individual decisions (which pubs to visit, water sources to use outside of the
home, etc.). These decisions were driven by the observed and unobserved characteristics of London
residents, many of which may also have influenced whether they developed cholera. This made it
impossible to argue that exposure to tainted water per se caused cholera: one could have argued
that exposure to tainted water was simply a proxy for other factors that actually drove cholera
infection.

31We have already seen an example where “getting the joint distribution right” was not be enough to insure a
reasonable estimate of program impact: in that earlier example the errors were assumed to be and were in reality
jointly normal, but identification by non-linearity did not work very well when there was insufficient variation in the
observable x.
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Snow focused on an extremely unusual institutional arrangement in the form of the happen-
stance assignment of households to the two water companies and the sudden divergence in their
water sources in the late 1840s. A household’s water company could thus be viewed as an in-
strument for their exposure to tainted water: out of all of the possible sources of variation in
tainted water, the household’s water company provided a random channel of variation in exposure
to tainted water.

Instrumental variables is also a popular impact estimation option in purposeful social experi-
ments, particularly when compliance with experimental assignment is not complete. The “Oregon
Experiment” from Chapter 3 is an example of this. In that case, 70,000 qualified individuals applied
for roughly 10,000 insurance policies under Oregon Health Plan Standard, a Medicaid program for
adults who are low-income, uninsured, “able-bodied” and not eligible for other public insurance in
Oregon. Of them, 30,000 were randomly selected to apply. However, many of the selected did not
ultimately complete the enrollment process of their own volition.

This creates real problems for the purposes of studying the impact of health insurance on
health care demand or health outcomes. Failure to apply by some was without doubt associated
with many observed and unobserved determinants of health care demand and, ultimately, health.
This means that eventual insurance status was also associated with these characteristics, returning
the experiment’s investigators to the original circumstances (the potential endogeneity of insurance
status as a determinant of health and health care demand) that prompted the experiment in the
first place.

One solution to this is to use the random selection to apply as an instrument for health insurance.
The theory behind this is that the attempt at purposeful randomization in this experiment still
provides a channel of random variation in health insurance status that should not have a direct effect
on health or health care demand and should not be correlated with any unobservables that influence
health or health care demand. In other words, it would seem to satisfy the classic requirements for
an instrument.

6.2 Local Average Treatment Effects

We concluded the last section by discussing explicitly conceptual links between instrumental vari-
ables estimation and experiments, advancing the idea that instruments can be viewed as represent-
ing experiments. Further, it was suggested that random assignment can serve as an instrument, a
particularly attractive fall-back position in purposeful randomized social experiments where there
is not complete compliance with randomized experimental assignment to participation status.

Unfortunately, however, there is a potential wrinkle to this insurance policy, as well as to the
more general interpretation of linear instrumental variables in the context of experiments: it turns
out that linear instrumental variables estimates program impact only for those who comply with
their assignment per the experiment that the instrument represents. This section is concerned with
this complication, which has been a central topic of the recent literature regarding instrumental
variables and led some to question its value as a program impact estimator (indeed, even more
broadly as a causal estimator).

Our overarching goal is to estimate average program impact across some population, typically
using the information provided by a random sample from that population. Until this point in this
chapter we have assumed that program impact was constant across the population. The notion that
instrument variables recovers an estimate of average program impact only for the subpopulation that
complies with the program participation status implied by their assigned value for the instrument
would not necessarily be problematic in this setting: since program impact was constant across the
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population, an estimator that identified average program impact for a subgroup of the population
might still effectively provide information about average impact at the population level since the
average impact for the subgroup in question would be the same as that for the population. In other
words, if program impact was constant then capturing impact only for those who comply with their
experimental assignment would not necessarily be a problem since their impact would be the same
as that of non-compliers.

Thus, the notion that instrumental variables recovers estimates of average program impact
consistent for those who comply with the program participation status implied by their assigned
value of the instrument is only a problem if program impacts are heterogeneous. Heterogeneous
impact means that program impact varies from individual to individual, and average program
impacts might differ between different types of individuals. Then, one has to consider the possibility
that those who comply with their experimental participation assignment have different average
program impacts from those who do not. In this case instrumental variables estimators of program
impact might provide extremely misleading estimates of average program impact at the population
level. The estimate of program impact that we do recover from instrumental variables in this case
is commonly referred to as a Local Average Treatment Effect (often referred to simply with
the acronym LATE, a convention that we adhere to for parsimony’s sake for the remainder of the
chapter). The term “local” distinguishes the average program impact involved from the “global”
average impact that would apply to the entire population.

It is worth delving into what “compliance” means where an instrument is concerned. When we
say that instruments represent experiments, this implies that the various values that the instruments
take on represent experimental assignments. Thus, when we speak of compliance in the instrumental
variables context, it might be useful to think in terms of a binary instrument. One value of the
instrument (say 0) might indicate assignment to non-participant status, while the other value (1)
might indicate assignment to participant status. A useful way to think about compliance is that
compliers are those whose participation status always reflects their participation assignment per
their instrument value.

It would perhaps be useful to begin approaching this issue a bit more formally. For the purpose
of thinking about what exactly linear instrumental variables identifies when there is program impact
heterogeneity and varying experimental assignment compliance across individuals, it is useful to
think of each individual (either from the population of interest or in any representative sample from
that population) as falling into one of three categories with regard to a potential instrument z:

1. Always Takers: These are people who will always participate in a program, regardless of
the value of z assigned to them;

2. Never Takers: These are people who will never participate, regardless of the value of z
assigned to them;

3. Compliers: These are the people who will participate if their assigned value of z indicates
that they should do so, and not participate if their assigned value of z indicates that they
should not do so.

One could conceive of a fourth group: those who would always select the opposite of the participa-
tion status indicated by their value of z. In other words, if their assigned value of z suggest that
they should participate, they will not do so. However, if their assigned value of z suggests that
they should participate, then they will elect not to participate. This possibility is typically ruled
out by what is usually referred to as the monotonicity assumption.

Suppose now that:
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• We have an instrument z that can take on only the values 1 (indicating that the individual
should participate) and 0 (indicating that the individual should not participate);

• Only a subset of the population of interest (or only a subsample of any random sample
from the population) changes their participation status from non-participation (P = 0) to
participation (P = 1) as the value of the instrument z changes from 0 to 1;

• Program impact varies between individuals (i.e. there is program impact heterogeneity).

When we use z as the sole instrument, the resulting estimate of program impact consistently
estimates program impact only for those who are compliers with respect to z. In other words,
instrumental variables estimation based on the instrument z provides an estimate of average pro-
gram impact that applies only to the compliers with respect to z. In effect, the instrument z allows
us to identify a channel of experimental variation in program participation P associated with or
meaningful for only one group: the compliers.

It is important to remember that complier status is instrument-specific. For instance, if there
were two instruments, z1 and z2, the subpopulations of compliers for the two instruments might
be completely different (or they might overlap heavily). Generally speaking, different instruments
will yield different local average treatment effects (since each potential instrument might influence
different types of individuals in terms of their program participation decision or, put a little bit
differently, each implies a different group of compliers). As we will discuss below, there are a few
things that can be learned about the complier population.

Let us outline a model. To our knowledge, there is no consensus approach for motivating this
issue from a theoretical (i.e. behavioral) standpoint. We therefore adopt our familiar potential
outcome approach to this issue. To begin with, suppose that we have the potential outcome
equations

Y 0
i = β0 + β2 · xi + β3 · µi + εYi

Y 1
i = β0 + β1i + β2 · xi + β3 · µi + εYi

We have an observed (xi) and unobserved (µi) individual-level characteristic determining potential
outcomes as well as a purely random, idiosyncratic unobserved component εYi . We assume that the
three are independently distributed. Program impact for individual i is

Y 1
i − Y 0

i

= β0 + β1i + β2 · xi + β3 · µi + εYi

−
(
β0 + β2 · xi + β3 · µi + εYi

)
= β1i

Notice that program impact is individual-specific. In other words, this model builds in potential
for heterogeneous program impact.

A regression specification can be derived in much the same fashion as with behavioral models
in preceding chapters. The observed outcome is

Yi = Pi · Y 1
i + (1− Pi) · Y 0

i

= Pi ·
(
β0 + β1i + β2 · xi + β3 · µi + εYi

)
+ (1− Pi) ·

(
β0 + β2 · xi + β3 · µi + εYi

)



6.2. LOCAL AVERAGE TREATMENT EFFECTS 285

= β0 + β1i · Pi + β2 · xi + β3 · µi + εYi

Notice that the unobservable µi appears in this equation, and would hence be an element of the
regression residual.

The cost of program participation is given by

Ci = γ0 + γ1 · xi + γ2i · zi + γ4 · µi + εCi

We now focus on one instrument, zi. For the purposes of this discussion, we will generally assume
that this instrument is binary. We will also assume that γ2i < 0. This means that an individual
becomes more likely to participate as the value of zi switches from 0 to 1 because as it does so their
cost of participation falls by γ2i · zi (it falls because γ2i < 0).

Individual i will choose to participate (i.e. their value for the program participation indicator
P , Pi, equals 1) if

Y 1
i − Y 0

i − Ci > 0

or
β1i − γ0 − γ1 · xi − γ2i · zi − γ4 · µi − εCi > 0

where we assume that εCi is uncorrelated with both εYi and zi. In this framework, LATE would
typically involve some correlation between β1i and γ2i The motivation for this assumption is that
those most responsive to the instrument (via a large negative value to γ2i) also have a program
impact that deviates from the overall population average impact.

Let us now consider a numerical example based on this system. This example is captured in
the STATA do-file 6.3.do. The potential outcome and cost equations are parameterized as follows
for 50,000 individuals:

Y 1
i = 2 + ωi + 1.5 · xi + µi + εYi

Y 0
i = 2 + 1.5 · xi + µi + εYi

Ci = 5.5 + 2 · x− 1.4 · ωi · zi + µi + εCi

where x and µ are independently normally distributed with mean 0 and variance 4 (i.e. x, µ ∼
N(0,4))) and the εs are independently normally distributed with mean 0 and variance 9 (i.e. εs ∼
N(0,9)). The instrument z equals 1 if a normally distributed random variable with mean 0 exceeds
0, and equals 0 otherwise. Finally, the variable ωi is distributed uniformly on the interval [0, 4] (this
means that ω can take on any value from 0 to 4, with all possible values in that interval having
equal probability of occurring).

Before proceeding to the results, it is worth considering the role that ωi plays in this system.
Program impact is

Y 1
i − Y 0

i = 2 + ωi + 1.5 · xi + µi + εYi

−
(
2 + 1.5 · xi + µi + εYi

)
= ωi

Program impact is thus individual specific. Individual i participates if

Y 1
i − Y 0

i − Ci > 0

or
ωi −

(
5.5 + 2 · x− 1.4 · ωi · zi + µi + εCi

)
> 0
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Clearly, the instrument zi will influence the participation decision, but the degree to which it does
will depend on ωi, which can take on values as small as 0 (in which case the instrument z plays no
roles in determining participation) or as large as 4. Since program impact is ωi, this means that
individuals with larger program impact will have greater responsiveness to the instrument z as a
determinant of their participation decision.

Output 6.42 provides the overall participation pattern. 36.12 percent participate in the program.
This is somewhat below the participation rates in many examples to this point in the manual.

STATA Output 6.42 (6.3.do)

. * Basic summary statistics: participation

. tabulate P

P Freq. Percent Cum.

0 31,942 63.88 63.88
1 18,058 36.12 100.00

Total 50,000 100.00

Output 6.43 provides summary statistics by participation status. Non-participants have much
higher average values for the potential outcomes, but also much higher costs. Interestingly, the
difference in the potential outcomes is just about 1.76 for non-participants and about 2.4 for
participants. In other words, participants have higher program impacts. Of course, this may also
reflect the fact that those with higher program impact also tend to have lower costs of participation
via the same mechanism: ω. Participants have lower values for the observed and unobserved,
respectively, background characteristics x and µ. Given the positive role they play in shaping
potential outcomes, this explains much of the difference in average potential outcomes {Y 0, Y 1}
between participants and non-participants.

The difference in the average value of the unobserved characteristic µ between participants and
non-participants hints at potential problems estimating program impact by simple means (such as
comparison of average outcomes Y between participants and non-participants or straightforward
regression of Y on P and x). The reason should be a familiar one by now: program participation is
associated with the unobservable µ. Therefore, when one attempts to capture average differences in
the outcome Y between participants and non-participants, either by simple comparison of averages
or straightforward regression, program participation plays two empirical roles: a control for the
experience of program participation (which is what we want it to do) and proxy for the unobserved
characteristic µ (which we do not want it to do). Its muddled empirical role yields a biased and
inconsistent estimate of program impact that combines both the true effect with a contribution
that reflects program participation P ’s burden of serving as a proxy for the unobservable µ.

Output 6.44 presents correlations among some of the key variables in this simulation. First,
and most importantly, program participation P is highly correlated with the unobservable µ. It is
also highly correlated with the instrument z, which provides some re-assuring prima facie evidence
that, at the least, weak instruments will not be a concern. Moreover, the instrument z is not
really correlated with the error term from the outcome equation, εY (with a meager correlation of
-0.0024). Program participation is highly correlated with ω (omega in Output 6.44).
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STATA Output 6.43 (6.3.do)

. * Basic summary statistics: variable means

.

. by P, sort: summarize Y y1 y0 c x* z* mu epsilon*

-> P = 0

Variable Obs Mean Std. Dev. Min Max

Y 31942 3.504195 4.264767 -16.55925 21.04068
y1 31942 5.269855 4.525998 -16.37425 24.27966
y0 31942 3.504195 4.264767 -16.55925 21.04068
c 31942 7.351672 3.856453 .045818 28.47001

x0 31942 1 0 1 1

x 31942 .765381 1.732334 -5.846226 8.543729
z 31942 .4285893 .494882 0 1

mu 31942 .3818189 1.944444 -7.467243 8.587901
epsilony 31942 -.0256958 2.987694 -11.88791 12.87173
epsilonc 31942 .8952693 2.772225 -8.871226 12.05819

-> P = 1

Variable Obs Mean Std. Dev. Min Max

Y 18058 1.652806 4.473777 -17.68306 18.638
y1 18058 1.652806 4.473777 -17.68306 18.638
y0 18058 -.7560726 4.14057 -19.3104 16.24554
c 18058 -1.672156 3.215136 -21.42513 3.920629

x0 18058 1 0 1 1

x 18058 -1.379782 1.668691 -8.141914 5.449922
z 18058 .6299147 .4828406 0 1

mu 18058 -.6756291 1.926847 -8.096637 6.72061
epsilony 18058 -.0107699 2.999512 -11.36862 12.5643
epsilonc 18058 -1.564312 2.751916 -12.37837 9.243759

STATA Output 6.44 (6.3.do)

. * Correlations among unobservables

.

. correlate P z* mu epsilony epsilonc omega
(obs=50000)

P z mu epsilony epsilonc omega

P 1.0000
z 0.1934 1.0000

mu -0.2535 0.0068 1.0000
epsilony 0.0024 -0.0022 0.0018 1.0000
epsilonc -0.3929 0.0051 -0.0065 -0.0025 1.0000

omega 0.2674 -0.0083 0.0034 -0.0004 0.0010 1.0000

Output 6.45 presents an estimate of average program impact at the population level from our
simulated sample of 50,000. The estimate is, unsurprisingly, just about 2 at 1.997965. This is
unsurprising because average program impact is simply the average of

Y 1
i − Y 0

i = ωi

However, we have assumed that ω is a uniformly distributed random variable on the interval
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spanning 0 to 4. The expected value of such a variable is 2. We have not explicitly presented
the estimate of average program impact in the simulation examples to this point. We do so now
simply because below we will be examining average program impact across the subpopulations of
importance for LATE.

STATA Output 6.45 (6.3.do)

. * Average program impact

.

. generate TE=y1-y0

. summarize TE

Variable Obs Mean Std. Dev. Min Max

TE 50000 1.997965 1.15535 .0000782 3.999935

Output 6.46 presents estimates from straightforward regression of Y on P and x. The estimate of
program impact is, at 1.110648, just over half the true average impact of 2. This is the consequence
of the correlation between P and µ on display. The direction of the bias is exactly what the omitted
variables formulas worked out in earlier chapters suggested: because µ and Y should be positively
correlated but µ and P are negatively correlated, the bias term is negative, suggesting that the bias
to the estimate of program impact from straightforward regression should be downward.

STATA Output 6.46 (6.3.do)

. * Cross sectional regression

.

. regress Y x P

Source SS df MS Number of obs = 50000
F( 2, 49997) =11983.07

Model 318162.39 2 159081.195 Prob > F = 0.0000
Residual 663735.141 49997 13.2754993 R-squared = 0.3240

Adj R-squared = 0.3240
Total 981897.531 49999 19.6383434 Root MSE = 3.6436

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 1.380798 .0095312 144.87 0.000 1.362116 1.399479
P 1.110648 .0396082 28.04 0.000 1.033015 1.188281

_cons 2.447358 .0216525 113.03 0.000 2.404919 2.489798

In Output 6.47 we present estimates of average program impact from compliers, never-takers and
always-takers. Since this is a simulated example, we parameterized the system and thus have the
luxury of easily determining the subpopulation among these three to which a particular observation
belongs. Doing so basically involves a hypothetical calculation. First, set the instrument equal to
0 for every individual in the sample. Then determine whether they would participate given that
instrument value, the value we attached to every parameter of the system, and the individual’s
draw for every other variable (e.g. xi, µi, ε

Y
i , etc.). Let the resulting participation outcome be

P z=0
i . Then set the instrument equal to 1 for each individual in the sample and determine their

participation outcome under this regime. We will call in P z=1
i .
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The never-takers are the individuals for whom

P z=0
i = P z=1

i = 0

In other words, the never-takers are those who never elect to participation, regardless of whether
the instrument z equals 0 or 1. Similarly, the always-takers are those for whom

P z=0
i = P z=1

i = 1

The always-takers thus always participate, regardless of instrument value. The compliers are those
for whom

P z=0
i = 0

and
P z=1
i = 1

In other words, changing the instrument z’s value from 0 to 1 induces the compliers to switch
from non-participation to participation in the program. There is of course another hypothetical
possibility, that

P z=0
i = 1

and
P z=1
i = 0

In other words, there is the hypothetical possibility that some would switch from participant to
non-participant as the instrument z switches from 0 to 1. It is this possibility that is commonly
ruled out by the monotonicity assumption.

STATA Output 6.47 (6.3.do)

. * The average treatment effect for compliers

. summarize TE if comp==1

Variable Obs Mean Std. Dev. Min Max

TE 9642 2.705054 .913936 .0256362 3.99993

. * The average treatment effect for the never takers

. summarize TE if never==1

Variable Obs Mean Std. Dev. Min Max

TE 27130 1.59954 1.080428 .0000782 3.999935

. * The average treatment effect for the always takers

. summarize TE if always==1

Variable Obs Mean Std. Dev. Min Max

TE 13228 2.299711 1.12321 .0001178 3.999846

From Output 6.47 we can see that average program impact differs between these three sub-
populations. Compliers (for whom the variable comp in Output 6.47 equals 1.) have the highest
estimated average program impact at 2.705054. The lowest estimated average program impact at
1.59954 is among the never-takers (indicated by never). Note as well that the three subpopula-
tions contain, collectively, 9,642 + 27,130 + 13,228 = 50,000 observations. This means that there
is no one for whom

P z=0
i = 1
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and
P z=1
i = 0

In other words, this simulated example satisfies the monotonicity assumption.
Finally, in Output 6.48 we present results from two-stage least squares estimation of program

impact. The estimate of program impact is 2.742388. Notice that this is almost exactly the same as
the estimate of program impact for compliers of 2.705054 that we estimated directly. It is not close
to the program impact estimates for the never- and always-takers. This is the essence of LATE:
linear instrumental variables has yielded an estimate of program impact that reflects the program
impact of compliers.

STATA Output 6.48 (6.3.do)

. ivregress 2sls Y x (P=x z), first

First-stage regressions

Number of obs = 50000
F( 2, 49997) = 10972.17
Prob > F = 0.0000
R-squared = 0.3050
Adj R-squared = 0.3050
Root MSE = 0.4004

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.1244896 .0008972 -138.76 0.000 -.1262481 -.1227312
z .1886522 .0035817 52.67 0.000 .181632 .1956725

_cons .2654226 .002536 104.66 0.000 .2604521 .2703932

Instrumental variables (2SLS) regression Number of obs = 50000
Wald chi2(2) =22663.92
Prob > chi2 = 0.0000
R-squared = 0.3011
Root MSE = 3.7048

Y Coef. Std. Err. z P>|z| [95% Conf. Interval]

P 2.742388 .1756519 15.61 0.000 2.398116 3.086659
x 1.58349 .0233447 67.83 0.000 1.537735 1.629245

_cons 1.859938 .0653687 28.45 0.000 1.731817 1.988058

Instrumented: P
Instruments: x z

The possibility that an instrumental variable estimate reflects LATE has enormous implications.
If the estimate has a LATE interpretation, then the instrumental variables estimator is simply not
yielding an estimate of average program impact that is relevant to the entire population for which
we wish to learn program impact. Rather, it consistently estimates average program impact only
for the complier population: those whose participation behavior responds to changes in the value
of the instrument.

This is a potential enormous complication, and raises reasonable questions about the usefulness
of instrumental variables as an estimator of program impact. There are a couple of things to
bear in mind, however. First, LATE is at least a consistent estimate of program impact for some
subpopulations. Second, the possibility of LATE in some sense strengthens the argument for
over-identified models: to the extent that different subpopulations respond to different specific
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instruments z, the more instruments included the potentially broader the subpopulation for which
the instrumental variables estimator consistently estimates average program impact.

Finally, while we cannot know which of the three subpopulations (never-takers, always-takers
and compliers) a particular observation belongs to, we can characterize some of the features of the
complier subpopulation as a whole.32 To begin with, we can estimate the proportion of the sample
that belongs to the complier subpopulation. The size of the complier subpopulation is simply the
sample average of

Pr (Pi = 1|zi = 1)− Pr (Pi = 1|zi = 0)

In other words, it is the average marginal effect of z from the first stage (the average change in the
probability of participation as the instrument z switches from 0 to 1 in value).

STATA Output 6.49 (6.3.do)

. tabulate comp

comp Freq. Percent Cum.

0 40,358 80.72 80.72
1 9,642 19.28 100.00

Total 50,000 100.00

. generate zt=z

. logit P x z

Iteration 0: log likelihood = -32704.135
Iteration 1: log likelihood = -23801.44
Iteration 2: log likelihood = -23502.054
Iteration 3: log likelihood = -23500.356
Iteration 4: log likelihood = -23500.356

Logistic regression Number of obs = 50000
LR chi2(2) = 18407.56
Prob > chi2 = 0.0000

Log likelihood = -23500.356 Pseudo R2 = 0.2814

P Coef. Std. Err. z P>|z| [95% Conf. Interval]

x -.8094979 .0080578 -100.46 0.000 -.8252909 -.7937049
z 1.198323 .023642 50.69 0.000 1.151986 1.244661

_cons -1.469398 .0184647 -79.58 0.000 -1.505588 -1.433207

. replace z=0
(25065 real changes made)

. predict p0
(option pr assumed; Pr(P))

. replace z=1
(50000 real changes made)

. predict p1
(option pr assumed; Pr(P))

. generate mx=p1-p0

. su mx

Variable Obs Mean Std. Dev. Min Max

mx 50000 .1885606 .0861325 .0005275 .290929

Recall that we calculated that 9,642 of the 50,000 observations, or about 19.3 percent, were

32For those who wish to move a bit beyond the coverage of this topic below, we recommend the excellent discussion
in Angrist and Pischke (2009), Section 4.4.4.
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compliers. In Output 6.49 we estimate the proportion of the sample who are compliers. First,
we actually tabulate comp to re-confirm that around 19.3 percent of the sample are compliers.
Next we regress P on x and z by logit regression, and use the fitted model (i.e. the model with
the parameter estimates from the regression) to compute the marginal effect of the instrument z).
We then average the marginal effect across the population to arrive at the estimate that 18.85606
percent of the sample are compliers, which is extremely close to the actual value of 19.3 percent.

Thus, even with just the information that we would normally actually observe (i.e. {Yi, Pi, xi, zi})
we would have been able to estimate that just under one in five in the sample are compliers. This is
a low but in no way atypical figure. It is common to find that the compliers are a distinct minority
of the population and of any representative sample from that population.

It is also possible to learn something about the average characteristics of the compliers. Since
the average characteristics of the population as a whole are easily estimated (simply compute the
sample average for each characteristic across a random sample from that population) it is thus
possible to gain insights into the ways in which compliers differ from the typical individual in the
population of interest.

A variety of approaches (i.e. formulas) have been proposed for this. We will focus on the “kappa
weighting” estimator from Abadie (2003), under which

E (xi|compi = 1) =
E (κi · xi)
E (κi)

where

κi = 1− Pi · (1− zi)
1− Pr (zi = 1|xi)

− (1− Pi) · zi
Pr (zi = 1|xi)

This formula thus allows us to estimate the expected value of xi given that the individual is a
complier (i.e. compi = 1, where comp is a binary indicator that equals 1 if the individual is a
complier and 0 otherwise along the lines of the variable comp from the various Outputs in this
section).

Output 6.50 reports the average of x across the entire sample of 50,000 individuals as well as for
the 9,642 who are compliers. The compliers have a lower estimated average value for x (-.2576623
against -.0093662). We are able to recover directly an estimate of the average of x because this is a
simulation of our own creation (hence we could determine whether each individual in the sample is
a complier or not). With a real world sample we would observe only {Yi, Pi, xi, zi} and thus would
need to estimate the average value of x with something like the kappa weighting estimator, since
it relies only on this more limited set of variables.

STATA Output 6.50 (6.3.do)

. su x

Variable Obs Mean Std. Dev. Min Max

x 50000 -.0093662 1.996121 -8.141914 8.543729

.

. su x if comp==1

Variable Obs Mean Std. Dev. Min Max

x 9642 -.2576623 1.443206 -5.658031 5.449922
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Output 6.51 presents the computation of the the kappa weighting estimate of the average of x
among compliers. The approach taken is to construct κi (referred to simply as k in the STATA
code), compute κi · xi (kx in the STATA code), calculate the sample average for each and divide.
The estimate of the average of x among compliers is -.30396967, which is not far off of the true
sample value of -.2576623.

STATA Output 6.51 (6.3.do)

. logit z x

Iteration 0: log likelihood = -34657.19
Iteration 1: log likelihood = -34656.368
Iteration 2: log likelihood = -34656.368

Logistic regression Number of obs = 50000
LR chi2(1) = 1.64
Prob > chi2 = 0.1999

Log likelihood = -34656.368 Pseudo R2 = 0.0000

z Coef. Std. Err. z P>|z| [95% Conf. Interval]

x .0057439 .0044811 1.28 0.200 -.0030389 .0145267
_cons .005254 .0089445 0.59 0.557 -.012277 .022785

.

. predict pz
(option pr assumed; Pr(z))

.

. g k=1-(P*(1-z))/(1-pz) - ((1-P)*z)/pz

.

. g kx=k*x

.

. su k

Variable Obs Mean Std. Dev. Min Max

k 50000 .1886487 .9784497 -1.027593 1

.

. loc a=r(mean)

.

. su kx

Variable Obs Mean Std. Dev. Min Max

kx 50000 -.0573435 1.979768 -7.841552 8.543729

.

. loc b=r(mean)

.

. di `b´/`a´
-.30396967

We conclude by noting in passing that nonlinear instrumental variables models often techni-
cally do not suffer from concerns regarding LATE. The reason is that these models typically rely
on distributional assumptions of the sort we considered in the last section, and the nonlinearity
associated with those distributional assumptions provides identification beyond what instruments
provide. For instance, in a bivariate probit model the assumed joint normality of the error terms
from the outcome and program participation latent variable equations is a source of identification
separate from that generated by the instruments, which are the source of the LATE concern. Thus
the estimate of average program impact generated by such models is not necessarily subject to a
LATE interpretation. Of course, the nonlinearity is the source of this additional identification, and
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as we have seen that might not constitute very reliable identification.

6.3 Regression Discontinuity Designs

We now briefly discuss an approach to program impact evaluation that could have served as the
basis for a short chapter of its own, but is presented here because perhaps the most widely applicable
version of it can be naturally viewed as a species of instrumental variables. The departure point
for this estimation tradition is the reality that some programs impose participation criteria in the
form of eligibility thresholds. In particular, these eligibility thresholds are generally defined with
respect to the characteristics of the prospective participants. For instance, some programs might
allow only those below a poverty threshold to enroll.

The eligibility threshold can then become a point at which the probability of participation might
experience a “discontinuity”. Specifically, on the ineligible side of the threshold are individuals who
are not eligible to enroll because of their characteristics. They are then either unable or unwilling
to participate in the program due to the burden of ineligibility per program’s eligibility rules (and
the difference between these two cases is of intellectual interest). Compared with those who are just
on the ineligible side of the threshold, those whose traits place them at the threshold of eligibility
suddenly have the constraints imposed by these eligibility criteria removed. This can generate a
rather sudden spike in the probability of program participation compared with those who are just
barely ineligible.

Let us consider the simplest case. Suppose that there is a program in which everyone would
participate if they could. Suppose as well that individuals have one observed characteristic x. A
program decides to allow individuals to participate if their observed characteristic x is below an
eligibility threshold e. In other words, the individual is eligible to participate if

x ≤ e

while he or she is ineligible if
x > e

Suppose as well that the eligibility criteria is strict in the sense that no one for whom x > e will
be allowed to participate.

This circumstance is referred to as a sharp discontinuity and is illustrated in Figure 6.10.
This Figure graphs the probability of participation Pr(P = 1|x) against the observed characteristic
x. Notice that this probability suddenly falls from 1 to 0 at the threshold. This is classically referred
to as a sharp discontinuity because participation is essentially a completely deterministic function
of the characteristic x. In other words, whether one is a participant or not is basically completely
determined by which side of the eligibility threshold their value for x places them.

Let us suppose that participation in the program actually has some positive impact (we will
refer to that impact as I) on an outcome Y . Further, we will assume that the outcome depends at
least in part on the observable x as well.33 To fix ideas, let us assume that x has a positive effect
on Y . Figure 6.11 graphs the outcome Y against the observable x.

The relationship between Y and x experiences a sudden discontinuity at e. The reason for this
is that participation falls suddenly and dramatically immediately above x = e. In other words, the
discontinuity (i.e. break) in the relationship between Y and x at x = e is driven completely by
the discontinuity in program participation. It reflects the dynamics of program participation with
respect to x.

33For the purposes of the immediate point being made, the second assumption is simply for intuitive appeal and
our ability to recover an estimate of program impact does not depend on it.
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The discontinuity/break in the relationship between Y and x is an artifact of the discontinu-
ity/break in program participation P at x = e. Thus, the discontinuity in Figure 6.11 is more or
less driven by program participation. Therefore, it is revealing program impact.

One possible regression specification that could tease out this program impact is

Y = β0 + β1 · I (x ≤ e) + β2 · x+ ε

where I(·) is an indicator function that equals 1 if the logical condition it references (in this case
x ≤ e) holds and 0 otherwise. The term

β1 · I (x ≤ e)

basically captures the possibility of a shift in the constant term between the eligible and the
ineligible. Then, the effective constant term for ineligible individuals is β0 while that for the
eligible individuals is

β0 + β1

Program impact is then β1.
Notice that the regression specification

Y = β0 + β1 · I (x ≤ e) + β2 · x+ ε

Figure 6.10: A “Sharp” Discontinuity Design



296 CHAPTER 6. INSTRUMENTAL VARIABLES

is for all intents and purposes identical to

Y = β0 + β1 · P + β2 · x+ ε

where P is an indicator of program participation that equals 1 if the individual participates and 0
otherwise. The reason is that an individual’s value for P depends wholly on whether their observed
characteristic x is above or below the threshold e. In other words,

P = I (x ≤ e)

This highlights the critical feature of the sharp design: program participation is a mechanical
function of the observed characteristic x.

This means that the program participation decision rule we have discussed to this point is not
really meaningful. Specifically, our typical participation decision is based on whether

Y 1 − Y 0 − C > 0

Now, participation is not really a decision for those on the ineligible side of the threshold: those
who are ineligible cannot enroll no matter what.

One detail we have not tied down is what insures that all eligible individuals do enroll. To
guarantee this, we typically need to add the condition

Y 1 − Y 0 − C > 0

Figure 6.11: A “Sharp” Discontinuity Design Treatment Effect
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At a minimum, this must hold for all individuals who are eligible (i.e. for all individuals for whom
x ≤ e) although many probably think of this as holding at all values for x (so that a pure sharp
design obtains regardless of the value for the threshold e).

The upshot of this is that from a regression standpoint the strict sharp design is in some sense
a classic selection on observables circumstance. To explore this briefly before moving on to a
framework more directly relevant to instrumental variables, let us consider a behavioral model.

Let us assume again that we have a sample of N individuals from a population indexed by i.
Suppose that potential outcomes are

Y 0
i = β0 + β2 · xi + β3 · µi + εYi

Y 1
i = β0 + β1 + β2 · xi + β3 · µi + εYi

Notice that program impact is simply

Y 1
i − Y 0

i = β1

In other words, for now we assume constant program impact.
Let us consider eligibility and the cost of participation. To begin with, an individual is eligible

to participate if xi ≤ e. They are ineligible if xi > e. It is still useful to specify a cost function
because even eligible individuals could face some cost associated with participation. Let us assume
that the cost of participation takes on the simple form

Ci = γ0 + γ1 · (1− I (xi ≤ e)) + γ2 · xi + γ3 · µi + εCi

Notice that the individual’s cost of participation changes by γ1 if they are ineligible. In other words,
being eligible removes a cost of participation of γ1. Let us also define

C̃i = γ0 + γ2 · xi + γ3 · µi + εCi

This is simply the cost of participation without considering eligibility.
The individual participates if

Y 1
i − Y 0

i − Ci > 0

A classic sharp design as presented can be introduced with two assumptions. First, we must assume
that

Y 1
i − Y 0

i − C̃i > 0

for all individuals i (or at least for the eligible). This insures that all individuals would elect to
participate were they eligible to do so. Second, the term γ1 must be so large that it overwhelms
every other determinant of cost (xi, µi and εCi ) and the program return β1 as a determinant of the
participation decision: if the individual is ineligible, they face the additional cost γ1, which makes
participation impossible.

Notice that this means that there is no real reason to believe that the unobservable µi is
correlated with program participation Pi. All individuals would participate if given the opportunity
to do so and what separates participants and non-participants is simply eligibility.

Once again, a regression specification is straightforward. We have

Yi = Pi ·
(
β0 + β1 + β2 · xi + β3 · µi + εYi

)
+ (1− Pi) ·

(
β0 + β2 · xi + β3 · µi + εYi

)
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= β0 + β1 · Pi + β2 · xi + β3 · µi + εYi

Note that we could substitute eligibility I(xi ≤ e) for P in this equation.
We briefly discuss a numerical example. Specifically, in STATA do-file 6.4.do we simulate 10,000

observations from the model:
Y 1
i = 13 + 2.5 · xi + µi + εYi

Y 0
i = 2 + 2.5 · xi + µi + εYi

where x, µ and εY are all normally distributed with mean 0 and variance 1 (i.e. x, µ, εY ∼ N(0,1)).
Individual i is eligible to participate if xi ≤ 0. The cost of participation is

Ci = 1 + 100 · (1− I (xi ≤ 0))− 1.5 · xi − µ+ εCi

where εCi is normally distributed with mean 0 and variance 1 (i.e. εC ∼ N(0,1)). I(xi ≤ 0) is
an indicator variable that equals 1 if xi ≤ 0 and 0 otherwise. Notice that the costs triggered by
ineligibility are, at 100, large in magnitude compared with the rest of the model. It would be useful
to keep in mind cost without considering eligibility:

C̃i = 1− 1.5 · xi − µ+ εCi

This will allow us to consider the individual’s intentions in the absence of eligibility criteria.
We present some basic summary statistics in Outputs 6.52 through 6.55. In Output 6.52 we

tabulate and cross tabulate the program participation and eligibility status (denoted by elig).
Roughly half participate and are eligible. However, the major take-away from this Output is that
program participation and eligibility are the same (as the sharp design would predict).

STATA Output 6.52 (6.4.do)

. * Basic summary statistics: participation and eligibility

. tabulate P

P Freq. Percent Cum.

0 5,037 50.37 50.37
1 4,963 49.63 100.00

Total 10,000 100.00

.

. tabulate elig

elig Freq. Percent Cum.

0 5,037 50.37 50.37
1 4,963 49.63 100.00

Total 10,000 100.00

.

. tabulate P elig

elig
P 0 1 Total

0 5,037 0 5,037
1 0 4,963 4,963

Total 5,037 4,963 10,000
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Output 6.53 presents the sample averages of the key variables by program participation status
(which is the same as saying that it does so by eligibility status). Perhaps the most important
thing to note is that there is no overlap in the values of x between non-participants/ineligibles
and participants/eligibles. As Angrist and Pischke (2009) highlight (with reference to Imbens and
Lemieux (2008)), this reflects one respect with which regression discontinuity (or at least the sharp
discontinuity variant) differs from other quasi-experimental methods: it depends on there being
no value for x that occurs among participants and non-participants. While the mean of x differs
between the two groups, those for µ, εY (represented by ey) and εC (represented by ec) are
basically the same.

Costs net of eligibility threshold considerations C̃ (represented by Ct) differ between the two
groups, but this reflects mainly the differences in the average values for x between the two groups
(since the means for µ and εC are basically the same across them). Notice the average cost for
non-participants is very high (at 99.818) compared with that for participants. This reflects the
ineligibility cost penalty.

STATA Output 6.53 (6.4.do)

. by P, sort: summarize x mu Y y1 y0 C Ct elig ey ec

-> P = 0

Variable Obs Mean Std. Dev. Min Max

x 5037 .7921362 .6011398 .0000284 3.641588
mu 5037 -.0020822 .988782 -3.328795 4.167702
Y 5037 3.962622 2.043871 -2.493304 11.74773

y1 5037 14.96262 2.043871 8.506696 22.74773
y0 5037 3.962622 2.043871 -2.493304 11.74773

C 5037 99.818 1.652332 93.41628 104.9598
Ct 5037 -.5780662 1.831878 -8.036539 4.823392

elig 5037 0 0 0 0
ey 5037 -.0156363 1.00283 -3.579602 3.630332
ec 5037 .004124 .994509 -3.786709 3.449271

-> P = 1

Variable Obs Mean Std. Dev. Min Max

x 4963 -.8051544 .604685 -3.918931 -.000185
mu 4963 -.0009141 1.000649 -3.379955 3.25495
Y 4963 10.98765 2.067781 2.205629 17.54821

y1 4963 10.98765 2.067781 2.205629 17.54821
y0 4963 -.0123504 2.067781 -8.794371 6.548206

C 4963 2.21441 1.662647 -3.398403 8.797449
Ct 4963 2.616987 1.844013 -3.230353 10.12673

elig 4963 1 0 1 1
ey 4963 .0014498 1.007571 -3.204001 3.915892
ec 4963 .0057641 .9885451 -3.794222 3.700645

Output 6.54 presents the mean of net return

Y 1
i − Y 0

i − C̃i

across the sample. This is represented in Output 6.54 by ret. Notice that it is never negative.
This is necessary to insure that everyone would elect to participate if eligible (which is the most
strict way to pose the strict sharp discontinuity story). When we present numerical examples we
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typically offer some language to the effect that the values for the parameters used for simulation are
more or less randomly chosen. That is not really the case in this instance: we had to set program
impact (represented by ATE in Output 6.54) to 11 to insure that this condition held. Even if we
had decided to pursue the minimalist approach to generating a sharp discontinuity and insure only
that

Y 1
i − Y 0

i − C̃i > 0

for the eligible (i.e. those for whom xi ≤ 0) it would still have required setting program impact to
some level high enough to insure even that. This highlights the sort of strong behavioral conditions
required to give rise to a pure sharp discontinuity.

STATA Output 6.54 (6.4.do)

. * Cost and ATE

.

. summarize ret ATE

Variable Obs Mean Std. Dev. Min Max

ret 10000 9.992361 2.435115 .8732748 19.03654
ATE 10000 11 1.99e-07 11 11

Output 6.55 presents some key correlations. Program participation and eligibility status are
perfectly correlated (as one would expect). µ is uncorrelated with program participation status.
This reflects the fact that participation is completely driven by the eligibility condition, removing
any scope for sorting of participants and non-participants by µ. x is highly negatively correlated
with both program participation and eligibility. This is an artifact of the fact that an individual
participates (i.e. is eligible) only if x falls below some threshold.

STATA Output 6.55 (6.4.do)

. * Key correlations

.

. corr P elig x mu
(obs=10000)

P elig x mu

P 1.0000
elig 1.0000 1.0000

x -0.7981 -0.7981 1.0000
mu 0.0006 0.0006 -0.0032 1.0000

Outputs 6.56 and 6.57 present results from regression of Y on participation P and eligibility
status, respectively. There are two major things to note from these results. First, the results of
the two regressions are identical, which is a reflection of the fact that participation and eligibility
status are identical. Second, the estimate of program impact is, at 7.025028, a big underestimate
from the standpoint of true ATE. This is because of a key omitted variable: x. x influences both
Y and eligibility/participation.

The low estimate of program impact thus reflects classic omitted variable bias (though we offer
the usual caveat that, as presented, this does not prove bias). It would seem that, quite likely, this
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could be dealt with simply by controlling for x (after all, the lack of correlation between P and µ
rules out selection on unobservables).

STATA Output 6.56 (6.4.do)

. * basic regression of Y on P

.

. reg Y P

Source SS df MS Number of obs = 10000
F( 1, 9998) =29191.89

Model 123370.777 1 123370.777 Prob > F = 0.0000
Residual 42253.546 9998 4.22619984 R-squared = 0.7449

Adj R-squared = 0.7449
Total 165624.323 9999 16.5640887 Root MSE = 2.0558

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 7.025028 .0411166 170.86 0.000 6.944431 7.105624
_cons 3.962622 .028966 136.80 0.000 3.905843 4.019401

STATA Output 6.57 (6.4.do)

. * basic regression of Y on eligibility

.

. reg Y elig

Source SS df MS Number of obs = 10000
F( 1, 9998) =29191.89

Model 123370.777 1 123370.777 Prob > F = 0.0000
Residual 42253.546 9998 4.22619984 R-squared = 0.7449

Adj R-squared = 0.7449
Total 165624.323 9999 16.5640887 Root MSE = 2.0558

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

elig 7.025028 .0411166 170.86 0.000 6.944431 7.105624
_cons 3.962622 .028966 136.80 0.000 3.905843 4.019401

In Output 6.58 we include x as a regressor. The resulting estimate of program impact is
11.00097, which as it happens is very close to the true value of 11. This is the simplest possible
sharp discontinuity regression.

We can now see from this exercise that strict sharp discontinuity circumstances are in essence
cases of selection on observables. A key to this that deserves highlighting is that the eligibility
threshold had nothing to do with the unobservable µ. Had that not been the case (i.e. had the
threshold been determined in such a fashion that the average value for µ was somehow different
between those who are eligible and those who are not) then the simple regression controlling for
the observable x would not have yielded an unbiased estimate of program impact since P would
have been correlated with the residual via µ.

We illustrate this sharp discontinuity example graphically in Figures 6.12 and 6.13. Figure
6.12 graphs both actual observed Y (in light blue dots) and predicted Y based on the estimated
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model from Output 6.58 (red dots). Notice that the predicted regression line experiences a clear
discontinuity at x = 0. This reflects the shift in participation status at the eligibility threshold
(which is the same: x = 0). The shift is program impact, as illustrated in Figure 6.13.

Before moving on, we note that, in practice, the strictly linear control for x in our sharp
discontinuity regression might not be very safe. The reason is that the underlying relationship
between x and {Y 0, Y 1} might not be linear. If this is the case a sharp discontinuity specification
that offers just one linear control for x might yield very misleading estimates of program impact.
The reason for this is that with only a linear control for x when the actual relationship between
x and {Y 0, Y 1} is nonlinear it can be difficult to differentiate the effect of the program from this
non-linearity.

To illustrate, consider the following trivial extension of the numerical example:

Y 1
i = 13 + 2.5 · xi + 2 · x2i − 2 · x3i + µi + εYi

Y 0
i = 2 + 2.5 · xi + 2 · x2i − 2 · x3i + µi + εYi

The major innovation is that we have introduced scope for non-linearity to the relationship between
x and {Y 0, Y 1} by introducing terms for x squared (x2) and x cubed (x3). This extension effectively
implies the behavioral framework

Y 0
i = β0 + β2 · xi + β4 · x2i + β5 · x3i + β3 · µi + εYi

Figure 6.12: Numerical Example: A “Sharp” Discontinuity
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Y 1
i = β0 + β1 + β2 · xi + β4 · x2i + β5 · x3i + β3 · µi + εYi

The framework now allows for a more complicated, non-linear relationship between x and the
potential outcomes {Y 1, Y 0}.

This in turn gives rise to the regression specification

Yi = Pi · Y 1
i + (1− Pi)Y 0

i

= Pi ·
(
β0 + β1 + β2 · xi + β4 · x2i + β5 · x3i + β3 · µi + εYi

)
+ (1− Pi) ·

(
β0 + β2 · xi + β4 · x2i + β5 · x3i + β3 · µi + εYi

)
= β0 + β1 · Pi + β2 · xi + β4 · x2i + β5 · x3i + β3 · µi + εYi

The most straightforward regression model emerging from this extended framework thus explicitly
recognizes the non-linearity of the relationship between Y and x. In other words, the original
regression specification

Yi = β0 + β1 · Pi + β2 · xi + β3 · µi + εYi

no longer truly captures the full, true functional form of the relationship between x and Y .

Figure 6.13: Numerical Example: Program Impact
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STATA Output 6.58 (6.4.do)

. * basic regression of Y on P and x

.

. reg Y P x

Source SS df MS Number of obs = 10000
F( 2, 9997) =36948.63

Model 145888.211 2 72944.1055 Prob > F = 0.0000
Residual 19736.1122 9997 1.97420348 R-squared = 0.8808

Adj R-squared = 0.8808
Total 165624.323 9999 16.5640887 Root MSE = 1.4051

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 11.00097 .0466443 235.85 0.000 10.90954 11.0924
x 2.48918 .0233073 106.80 0.000 2.443493 2.534867

_cons 1.990853 .0270704 73.54 0.000 1.937789 2.043916

In Outputs 6.59 and 6.60 we present results from two sharp discontinuity regressions with a
sample simulated under this extension (these were estimated through STATA do-file 6.5.do, which
contains the simulation per this extension to allow for a nonlinear relationship between x and Y ).
In Output 6.59, which repeats the same sort of estimation exercise as in Output 6.58, we now
recover an estimate of program impact of 2.361814 , which is far below the true value of 11.

STATA Output 6.59 (6.5.do)

. * basic regression of Y on P and x

.

. reg Y P x

Source SS df MS Number of obs = 10000
F( 2, 9997) =11699.65

Model 628287.172 2 314143.586 Prob > F = 0.0000
Residual 268426.16 9997 26.8506712 R-squared = 0.7007

Adj R-squared = 0.7006
Total 896713.332 9999 89.6803013 Root MSE = 5.1818

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 2.361814 .1720206 13.73 0.000 2.024619 2.699009
x -6.947736 .0859556 -80.83 0.000 -7.116226 -6.779245

_cons 8.29658 .0998336 83.10 0.000 8.100886 8.492274

In Output 6.60 we present results from the richer approach of regressing Y on P (or one could
have used the eligibility status since program participation and eligibility status are still identical)
and x, x2 and x3. The estimate of program impact is now 11.00064, which is very close to the true
value of 11.

The discrepancy in program impact estimates between Outputs 6.59 and 6.60 reflects the failure
to capture the nonlinearity of the relationship between Y and x with the specification in Output
6.59. In that instance the program participation variable was forced in essence to capture some of
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that non-linearity as well as program impact. With the inclusion of terms (x2 and x3) that explicitly
capture such nonlinearity, program participation/eligibility is in some sense freed to capture impact.
That said, even our extended example is restrictive (in the sense that the non-linear relationship
between x and Y 1 is the same as that between x and Y 0), so real world applications might require
even richer specifications. See Angrist and Pischke (2009) for one of the clearest discussions of
appropriately capturing such non-linearity that we have seen.

STATA Output 6.60 (6.5.do)

. * basic regression of Y on P and x, x2, x3

.

. reg Y P x x2 x3

Source SS df MS Number of obs = 10000
F( 4, 9995) = .

Model 876977.746 4 219244.436 Prob > F = 0.0000
Residual 19735.5868 9995 1.97454595 R-squared = 0.9780

Adj R-squared = 0.9780
Total 896713.332 9999 89.6803013 Root MSE = 1.4052

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 11.00064 .0555559 198.01 0.000 10.89174 11.10954
x 2.488684 .0402076 61.90 0.000 2.409869 2.567499

x2 1.994864 .0099724 200.04 0.000 1.975316 2.014412
x3 -1.999895 .0069435 -288.02 0.000 -2.013506 -1.986284

_cons 1.996159 .0323807 61.65 0.000 1.932686 2.059631

We included controls for x2 and x3 because we controlled the design of the data generating
process and hence knew exactly the features of the non-linear relationship between x and Y . With
real world samples we really would not know the nature (e.g. functional form) of the relationship
between the x and Y . It is therefore advisable to include much richer terms to capture possible non-
linearity: not only x, x2 and x3 but also x4, x5, x6 and so on. We are unaware of any established
best practice for this, but it seems reasonable that two “stopping criteria” for determining the
order of polynomial term (i.e. the R in xR) up to which to control is to add terms until further
polynomial terms are no longer significant (with some overshooting past the last significant result
to be more confident that they are indeed no longer significant) and until the estimate of program
impact does not seem to change appreciably with the inclusion of further polynomial terms.

We now extend this basic idea to the arena of instrumental variables estimation. To begin with,
we return to the original behavioral framework for the sharp discontinuity design, including the
potential outcome equations

Y 0
i = β0 + β2 · xi + β3 · µi + εYi

Y 1
i = β0 + β1 + β2 · xi + β3 · µi + εYi

We also retain the eligibility threshold xi ≤ e and the cost function

Ci = γ0 + γ1 · (1− I (xi ≤ e)) + γ2 · xi + γ3 · µi + εCi

In other words, to this point we retain exactly the framework that guided the discussion of sharp
discontinuity.

We now depart from the sharp discontinuity story in two respects:



306 CHAPTER 6. INSTRUMENTAL VARIABLES

• We no longer assume that Y 1
i − Y 0

i − C̃i > 0 for all individuals in our sample, nor do we
assume that it must hold for eligible individuals. This implies that some eligible individuals
might not choose to participate and some ineligible individuals would not have participated
even if they had been eligible;

• We no longer assume that γ1 is so large as to overwhelm any role that x, µ or εC might play in
shaping the enrollment decision. This implies that some who are ineligible might participate
anyway.

These two small modifications essentially shatter the clean and clear circumstances of the sharp
discontinuity case.

There are several immediate implications to these extensions. First, it is no longer the case that
the eligibility threshold perfectly sorts participants and non-participants: indeed there could be
both participants and non-participants on both sides of the threshold. An immediate implication
of this is that eligibility and program participation are not the same thing:

P 6= I (x ≤ e)

The fact that there could be participants and non-participants on either side of the threshold has
led to this new circumstance being labelled fuzzy discontinuity.

Second, to the extent that γ1 is large enough that it still has some teeth (by which we mean that
it still can determine the participation decision of at least some individuals) we would still expect
some kind of discontinuity in the probability of program participation at the eligibility threshold
(since the additional costs γ1 suddenly kick in at the threshold). In particular, we now face the
possibility of individuals for whom

Y 1
i − Y 0

i − C̃i > 0

while
Y 1
i − Y 0

i −
(
C̃i + γ

)
≤ 0

In other words, whether these individuals participate depends on whether they are eligible and
hence face the cost γ: if they do not face them they will participate and if they do they won’t do
so. Hence, the imposition of the cost γ starting at the threshold can cause a discrete fall in the
probability of program participation.

Finally, since there is now scope for µ to play a role in the program participation decision, it
is no longer clear that we are still in the realm where estimation of program impact can rely on
selection on observables methods. We likely cannot rely on methods essentially straight out of
Chapter 4.

Suppose, however, that the eligibility threshold is unrelated to the unobservable µ. This be-
havioral framework gives rise to the regression model

Yi = β0 + β1 · Pi + β2 · xi + β3 · µi + εYi

The residual for this is
β3 · µi + εYi

Notice that eligibility status I(x ≤ e) does not appear directly in the regression specification, would
have a influence on Yi only through Pi (since this is the only thing that becoming eligible might
shift) and is unrelated to the residual. In other words, it influences the outcome only through the
endogenous variable Pi and is not correlated with the true regression residual. In other words,
eligibility I(xi ≤ e) is essentially an instrument for Pi.
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Let us consider another numerical example. Specifically, in STATA do-file 6.6.do we simulate
1,000,000 observations for the model

Y 1
i = 5− 2 · xi + 7 · µ+ εYi

Y 0
i = 1− 2 · xi + 7 · µ+ εYi

Ci = 2 + xi + 5 · (1− I (xi ≤ .3)) + 3 · µ+ εCi

where x and µ are drawn from a standard normal distribution (i.e. x, µ ∼ N(0,1)), εY is drawn
from a normal distribution with mean 0 and variance 9 (e.g. εY ∼ N(0,9)) and εC is drawn from
a normal distribution with mean 0 and variance 16 (εC ∼ N(0,16)). The large sample size was
designed to insure that results did not reflect any small sample quirk in light of the fact that the
instrumental variables estimator is consistent.

In Output 6.61 we present patterns to participation and eligibility. First, note that around
51 percent participate while roughly 62 percent are eligible to do so. Around 21 percent of the
ineligible participate. The figure for the eligible is 69.83741. This does not prove that the eligibility
threshold influences participation (since the threshold itself depends on x which also influences the
participation decision). However, it certainly can be viewed as prima facie evidence consistent with
this possibility.

STATA Output 6.61 (6.6.do)

. * Basic summary statistics: participation and eligibility

. summarize P elig

Variable Obs Mean Std. Dev. Min Max

P 1000000 .512429 .4998457 0 1
elig 1000000 .61749 .4860003 0 1

.

. by elig, sort: su P

-> elig = 0

Variable Obs Mean Std. Dev. Min Max

P 382510 .2122559 .4089056 0 1

-> elig = 1

Variable Obs Mean Std. Dev. Min Max

P 617490 .6983741 .4589641 0 1

In Output 6.62 we present the means of key variables by program participation status. To
begin with, note that the means of x and µ differ between the participant and non-participant
subsamples. The latter represents a distinct departure from the sharp discontinuity setting. This
introduces the prospect that program participation is associated with the unobservable. In other
words, it introduces the prospect that program participation is endogenous. Note as well that,
unlike the sharp discontinuity setting, there is heavy overlap in the range of values for x found
among participants and non-participants. Perhaps unsurprisingly, the non-participants face much
higher average costs of participation. Finally, non-participants are less likely to have been eligible
to participate in the program.
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In Output 6.63 we present correlations for key variables. Eligibility and program participa-
tion are now heavily correlated (with a correlation of .4727) but not perfectly so. The observed
characteristics x is heavily correlated with program participation, but so is the unobservable µ.
Note, however, that eligibility (our candidate instrument) is essentially uncorrelated with µ with
a correlation of -0.0014. The upshot of these correlations is that we likely have an endogeneity
problem (were we simply to regress Y on P and x) but we also have a good candidate instrument
in eligibility status, which is highly correlated with the endogenous variable (P ) but not with the
unobserved determinant of Y , µ.

STATA Output 6.62 (6.6.do)

. * Summary statistics

.

. by P, sort: summarize x mu Y y1 y0 C elig ey ec

-> P = 0

Variable Obs Mean Std. Dev. Min Max

x 487571 .4302715 .9478949 -4.468497 4.690036
mu 487571 .3980109 .9256133 -3.870993 4.8915
Y 487571 2.926242 7.741386 -32.62632 42.46924

y1 487571 6.926242 7.741386 -28.62632 46.46924
y0 487571 2.926242 7.741386 -32.62632 42.46924

C 487571 8.837613 3.621684 4.000004 31.57618
elig 487571 .3819977 .4858765 0 1
ey 487571 .000709 3.001664 -15.50635 13.23711
ec 487571 2.123298 3.45043 -11.76793 18.73824

-> P = 1

Variable Obs Mean Std. Dev. Min Max

x 512429 -.4089781 .8695881 -4.9255 4.071929
mu 512429 -.3779881 .9169414 -4.885721 3.985869
Y 512429 3.174202 7.546185 -30.73956 39.41773

y1 512429 3.174202 7.546185 -30.73956 39.41773
y0 512429 -.8257979 7.546185 -34.73956 35.41773

C 512429 -.7850499 3.47768 -21.03528 3.999999
elig 512429 .8415585 .3651548 0 1
ey 512429 .0021629 3.001856 -13.64473 13.53007
ec 512429 -2.034315 3.385695 -21.70841 11.8032

STATA Output 6.63 (6.6.do)

. * Key correlations

.

. corr P elig x mu
(obs=1000000)

P elig x mu

P 1.0000
elig 0.4727 1.0000

x -0.4192 -0.7850 1.0000
mu -0.3881 -0.0014 0.0013 1.0000
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In Output 6.64 we present estimates from regression of Y on P and x. To assess these results,
one must recognize that the true average treatment effect is

Y 1
i − Y 0

i

5− 2 · xi + 7 · µ+ εYi

−
(
1− 2 · xi + 7 · µ+ εYi

)
= 4

Against this, the estimate of program impact from the regression (-2.577132) is truly dreadful.

STATA Output 6.64 (6.6.do)

. reg Y P x

Source SS df MS Number of obs = 1000000
F( 2,999997) =95527.00

Model 9370250.38 2 4685125.19 Prob > F = 0.0000
Residual 49044888.3999997 49.0450354 R-squared = 0.1604

Adj R-squared = 0.1604
Total 58415138.6999999 58.4151971 Root MSE = 7.0032

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P -2.577132 .0154319 -167.00 0.000 -2.607378 -2.546886
x -3.366212 .0077076 -436.74 0.000 -3.381318 -3.351105

_cons 4.374627 .0105636 414.12 0.000 4.353923 4.395331

In Output 6.65 we provide two-stage least squares estimates of program impact using eligibility
as an instrument. First, in terms of first stage predictive power note that eligibility (elig in the
Output) is highly significant. The first stage explanatory power standard seems easily met. The
second stage estimate of program impact is 3.975063, which is very close to the true value of 4.

Finally, we conduct two interesting graphical exercises. First, we performed a logit regression of
program participation P on x and I(x ≤ .3) (in other words, the eligibility indicator). We use the
estimated model to predict participation. In Figure 6.14 we provide a scatter plot of participation
(light blue) and predicted participation (crimson) against x. Notice that there are participants
and non-participants at each value for x. More interestingly, there is a clear discontinuity to the
probability of participation conditional on x, and it is at x = .3 (though that is admittedly difficult
to determine precisely given the detail on the graph; we assure the reader that the discontinuity is
indeed at x = .3). This is the discrete drop in the probability of participation given the imposition
of the eligibility cost as soon as x > .3.

We repeat this exercise, only this time the focus is on µ. Hence, we perform logit regression
of P on µ and I(x ≤ .3). In Figure 6.15 we scatter plot program participation (light blue) and
predicted program participation (crimson) against µ. The pattern this time exhibits no evidence
for a discontinuity in the probability of participation, but the plot of the predicted probabilities
against µ clearly indicates that there appear to be two curves governing this relationship, one
associated with a consistently higher predicted probability of participation than the other. The
“wedge” separating these two curves is eligibility. But the important takeaway is that there is no
evidence for a discontinuity with respect to the unobservable µ.



310 CHAPTER 6. INSTRUMENTAL VARIABLES

Up to this point in the discussion of the fuzzy design, we have assumed a constant program
impact across the sample. However, in the context of heterogeneous program impact, the fuzzy
RD (or at the least the instrumental variables implementation of it) yields an estimate with a local
average interpretation. In this setting the compliers are those who would switch their participation
status depending on whether they faced the eligibility cost.

To explore this, we introduce a trivial extension of our fuzzy design numerical example. Specif-
ically, we now extend one of the potential outcome equations as follows:

Y 1
i = 5 + wi − 2 · xi + 7 · µ+ εYi

where w is distributed uniformly on the interval [0,15]. We simulate 1,000,000 observations for this
extension in STATA do-file 6.7.do.

Before proceeding, note that program impact is now

Y 1
i − Y 0

i

= 5 + wi − 2 · xi + 7 · µ+ εYi

−
(
1− 2 · xi + 7 · µ+ εYi

)
= 4 + wi

Figure 6.14: Discontinuity in the Probability of Participation: x
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In other words, the program impact varies from individual to individual.
We skip the standard Outputs involving basic statistics and instead begin with Output 6.66,

which presents the average treatment effect across the entire sample, as well as program impact
only among compliers. The average treatment effect is 11.49778 while average program impact
among compliers (i.e. the local average treatment effect, at least with respect to the instrument
I(x ≤ .3) is 8.348064. That LATE is less than ATE is not a big surprise: the compliers are those
responsive (in terms of switching their program participation decision) to the eligibility cost. Those
who were closer to indifference between participating and not doing so are more likely to allow a
factor such as the eligibility cost to drive their decision. Around 17.7 percent of the sample are
compliers.

Output 6.67 presents results from simple regression of Y on P and x. The estimate of program
impact is, at 6.961003, far from the true average treatment effect across the sample of 11.49778. The
two-stage least squares instrumental variable (with eligibility I(x ≤ .3) as the instrument) estimate
is presented in Output 6.68. The estimate of program impact from this two-stage estimation is
8.452753.

This clearly differs from the average treatment effect across the sample, but is very close to
the LATE value of 8.348064. We can thus see that, in the presence of heterogeneous treatment
effects, the LATE interpretation of the instrumental variables case carries over to the instrumental
variables fuzzy discontinuity setting.

Figure 6.15: No Discontinuity in the Probability of Participation: µ
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STATA Output 6.65 (6.6.do)

. ivreg Y x (P=elig x), first

First-stage regressions

Source SS df MS Number of obs = 1000000
F( 2,999997) = .

Model 57325.1164 2 28662.5582 Prob > F = 0.0000
Residual 192520.404999997 .192520981 R-squared = 0.2294

Adj R-squared = 0.2294
Total 249845.52999999 .24984577 Root MSE = .43877

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.062661 .0007077 -88.55 0.000 -.064048 -.061274
elig .3848326 .0014572 264.08 0.000 .3819765 .3876888
_cons .2748122 .0010012 274.48 0.000 .2728499 .2767746

Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 1000000
F( 2,999997) =70954.09

Model 528699.804 2 264349.902 Prob > F = 0.0000
Residual 57886438.8999997 57.8866125 R-squared = 0.0091

Adj R-squared = 0.0090
Total 58415138.6999999 58.4151971 Root MSE = 7.6083

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 3.975063 .0656616 60.54 0.000 3.846369 4.103757
x -1.994455 .015709 -126.96 0.000 -2.025244 -1.963666

_cons 1.016797 .0344993 29.47 0.000 .9491791 1.084414

Instrumented: P
Instruments: x elig

STATA Output 6.66 (6.7.do)

. * ATE, whole sample

.

. summarize ATE

Variable Obs Mean Std. Dev. Min Max

ATE 1000000 11.49778 4.327637 4.000031 18.99995

.

. * ATE, compliers

.

. summarize ATE if complier==1

Variable Obs Mean Std. Dev. Min Max

ATE 177378 8.348064 3.162492 4.000098 18.99975

The two-stage least squares specification presented has involved simply linear terms in x. In
practice, the first and second stage specifications often involve additional polynomial terms in x,
{x, x2, x3, ..., xR}, and in the first stage specification, interactions between I(x ≤ e) and those



6.3. REGRESSION DISCONTINUITY DESIGNS 313

polynomials, {x · I, x2 · I, x3 · I, ..., xR · I} (where we abbreviate I(x ≤ e) as I). These sort of
polynomial terms are introduced for a very similar reason to that which led to their introduction in
the sharp discontinuity case. In our example we got away with not doing so because the underlying
relationships between x and the potential outcomes and cost was linear.

STATA Output 6.67 (6.7.do)

. reg Y P x

Source SS df MS Number of obs = 1000000
F( 2,999997) =95547.58

Model 14080954.1 2 7040477.06 Prob > F = 0.0000
Residual 73685339.5999997 73.6855605 R-squared = 0.1604

Adj R-squared = 0.1604
Total 87766293.6999999 87.7663814 Root MSE = 8.584

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 6.961003 .0246269 282.66 0.000 6.912735 7.009271
x -2.145149 .0089427 -239.88 0.000 -2.162676 -2.127621

_cons 5.420296 .0224751 241.17 0.000 5.376245 5.464346

STATA Output 6.68 (6.7.do)

. ivreg Y x (P=elig x), first

First-stage regressions

Source SS df MS Number of obs = 1000000
F( 2,999997) =59555.65

Model 14056.3422 2 7028.17109 Prob > F = 0.0000
Residual 118009.796999997 .11801015 R-squared = 0.1064

Adj R-squared = 0.1064
Total 132066.138999999 .13206627 Root MSE = .34353

P Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.027981 .0005541 -50.50 0.000 -.029067 -.0268951
elig .1960948 .0011409 171.87 0.000 .1938587 .198331
_cons .7223344 .0007839 921.49 0.000 .7207981 .7238708

Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 1000000
F( 2,999997) =57080.49

Model 13810587.1 2 6905293.53 Prob > F = 0.0000
Residual 73955706.5999997 73.9559284 R-squared = 0.1574

Adj R-squared = 0.1574
Total 87766293.6999999 87.7663814 Root MSE = 8.5998

Y Coef. Std. Err. t P>|t| [95% Conf. Interval]

P 8.452753 .1456513 58.03 0.000 8.167282 8.738225
x -1.991898 .017255 -115.44 0.000 -2.025717 -1.958079

_cons 4.162098 .1231483 33.80 0.000 3.920732 4.403465

Instrumented: P
Instruments: x elig
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6.4 Some Closing Thoughts

In this chapter we have discussed instrumental variables, a very slick and potentially powerful
method of program impact evaluation that allows us to use a variable (the instrument) to capture
a random channel of program participation, which is otherwise not random at all. This has proven
to be an extremely popular method of impact evaluation (and causal modelling more generally).

It is not one without its perils, however. Perhaps the most important disadvantage of this
approach is that it requires that the evaluator model participation, at least in part. Crucially, one
must assume that there is a variable (or, more specifically, at least one variable) that influences
program participation but otherwise has no effect on the outcome of interest and is not related to
the unobserved determinants of the outcome of interest. It can be very difficult to persuasively
defend assumptions along this line, and they cannot always be tested.

Beyond this central issue, the performance of the estimator can be rather fragile. It can yield
very misleading impact estimates with small samples, instruments that only weakly influence par-
ticipation, etc. In the realm of limited dependent outcomes of interest, there can be a trade-off
between more easily estimated models requiring restrictive distributional assumptions and more
flexible and potentially robust approaches that can comparatively be a nightmare to estimate (and
are not available in most standard commercial statistical analysis packages).

There is a potentially serious interpretational issue with the instrumental variables strategy.
Even if all of the aforementioned requirements for successful instrumental variables estimation are
met, it can yield estimates of program impact that, while consistent, are so only for the types of
individuals who would allow their program participation decision to be shaped by the instrument. In
other words, it does not necessarily yield an estimate of the sort of true population average program
impact that might be of interest. While it is true that some important things can be learned about
the population whose average treatment effect is being recovered (the so-called “compliers”) this
still does not necessarily tell us anything about how their impact relates to that for, for instance,
the average person in society.



Chapter 7

Final Thoughts

We have now reached the end of our journey through the subject of program impact evaluation
methods. This has hopefully left the reader with a richer, more nuanced understanding of alterna-
tive program impact evaluation methods.

The fundamental identification problem of program impact evaluation is that we cannot observe
the value of an outcome of interest for any given individual both when they participate (Y 1, in
the potential outcome terms we have utilized throughout these chapters) and when they do not
participate (Y 0) in a program. We can only observe one of these for a particular individual. This
makes it impossible to estimate program impact at the individual level.

A natural response is to shift focus from program impact at the individual level to average
impact at the population level. In principle, estimation of average impact would entail, essentially,
comparison of outcomes across participants with those across non-participants. Specific methods
might involve taking the difference in average outcomes across representative samples of partic-
ipants and non-participants or regression of the outcome of interest on an indicator of program
participation.

However, such measures of differences in outcomes between participants and non-participants
might not reflect the impact of program participation. Under normal real world circumstances,
individuals decide whether to participate in a program. When they do so, that decision is typically
influenced by their background characteristics, as well as the environmental circumstances and
constraints confronting them. This means that these sorts of factors help to sort individuals into
participant and non-participant sub-populations. We would therefore expect that the distribution
of these factors would differ between these two groups. Even when participation is a program-
level decision (as in when program officials decide which communities will and will not receive the
treatment), the characteristics of the unit of participation typically inform that decision.

When such non-random assignment to program participation status occurs, simple methods
of impact evaluation (such as the aforementioned comparison of average outcomes between par-
ticipants and non-participants or regression of an outcome of interest on an indicator of program
participation) will not yield unbiased estimates of program impact. The reason is simple: these
methods basically simply compare outcomes between participants and non-participants. However,
when participants and non-participants differ on average in their characteristics, it becomes im-
possible to say whether any differences in outcomes between the two groups is due to program
participation or differences in their other characteristics that might also generate differences in
outcomes.

The solution to this potential challenge can be looked at in two different but related ways.
First, one could view the challenge of program impact evaluation as being one of finding samples of
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program participants and non-participants that are sufficiently comparable in their characteristics
that one could argue that any differences in average outcomes between the two must be driven by
the experience of program participation.

Second, one could view the challenge of program impact evaluation as one of finding a random
channel of variation in program participation out of overall variation, which might not be random.
Variation driven by this random channel should then effectively identify comparable (in the sense
of reflecting similar background characteristics) participants and non-participants or differences in
outcomes between the two that reflect only variation in the experience of program participation. To
one degree or another, every impact evaluation methodology considered in this manual implicitly
uses one or both of these angles as a departure point for developing an estimation approach that
yields unbiased and/or consistent estimates of program impact.

7.1 A Brief Recap

We have covered four major traditions of program impact evaluation methods designed to recover
estimates of impact that reflect the causal impact of program participation on an outcome of
interest. It is perhaps useful to recap briefly the methods, summarizing and hence contrasting
them in one place.

7.1.1 Randomized Control Trials

Randomized control trials (i.e. RCTs) involve deliberate randomization of program participation.
This approach has great appeal: it relies on a simple mechanism (randomization) for generating
estimates of program impact. However, there are limitations. Randomization can be tricky in
practice and cannot always be tested. To the extent that the latter is true, the distinction between
RCTs and quasi-experimental methods becomes blurred: both essentially rely on assumptions in
order to interpret program impact estimates as the causal impact of program participation on
an outcome. Moreover, many interesting programs cannot be evaluated (or, more broadly, many
interesting causal questions cannot be addressed) by them because randomization is not always
feasible and even when it is some simple potential parameters of interest (such as median program
impact) cannot be identified. More broadly, there will always be lingering doubt that humans will
ever passively accept their experimental assignment.

7.1.2 Selection on Observables Models

Selection on observable methods for estimating program impact essentially assume that we can
observe all of the factors (background characteristics, constraints, environmental circumstances,
etc.) that influence both the program participation decision and the outcome of interest. The two
major branches of this approach are regression and matching, though as we have seen they are not
really altogether distinct (e.g. regression can be seen as a kind of matching estimator). In principle,
both of these estimation approaches are simple, but in practice there appears to be considerable
methodological disagreement about the specifics of implementation (though it is unclear how often
these differences are important in practice). In general, the identifying assumption of these models
(that we can observe everything that influences both participation and the outcome) is a very
strong one. Nonetheless, this is a very popular approach to impact evaluation.
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7.1.3 Within Models

Within methods assume that any factors that influence program participation and the outcome of
interest, and which we cannot observe, are somehow fixed. The classic example involves longitudinal
data and assumes that such factors are fixed over time, but the basic approach has sometimes been
applied in a strictly cross-sectional context (e.g. assuming that the unobserved confounding factor
is constant across communities). This assumption, that the unobserved confounder is fixed, is the
key identifying assumption of these models. This is indeed a potentially powerful identification
mechanism. For instance, with longitudinal data, every individual in some sense becomes a control
for themselves. However, the assumption that all unobserved confounding factors are so fixed is
a strong one. Moreover, this estimation approach can actually worsen some types of bias (i.e.
measurement error bias) and cannot be applied to many modelling circumstances of potential
interest (e.g. the limited dependent variable options are, well, limited).

7.1.4 Instrumental Variables

Instrumental variables methods rely on instruments which are correlated with random channels
of program participation, out of overall variation in participation (which might not be random).
A valid instrument needs to be correlated with program participation, have no independent role
in determining the outcome of interest and be uncorrelated with any unobserved determinants of
program participation. The latter two assumptions can generally be tested only in the case where
there are multiple instruments per endogenous variable (i.e. the over-identified case). Even when
these assumptions regarding the instrument(s) are met interpretation can be complicated by the
possibility of local average treatment effects. Specifically, in the local average treatment effects
case instrumental variables generates a consistent estimate of program impact only for the sub-
population whose program participation is responsive to variation in the instrument. Thus, in this
instance instrumental variables does consistently identify program impact for some subpopulation
about which some can be learned (e.g. their proportion of the population and basic characteristics),
but it remains unclear how a local average treatment effect might relate to, say, the average pro-
gram impact across the population. Compared with within models, there are far more options for
instrumental variables estimation with limited dependent variables, though one needs to be mindful
of the additional assumptions many such models entail. One important application of instrumental
variables is to the “fuzzy” regression discontinuity design, whereby some eligibility criteria generates
a discontinuity in the probability of participation and eligibility status can serve as an instrument,
though estimates generated by this application can have a local average interpretation as well.

7.2 The Future

Although we have focused on these four central traditions for estimation of program impact, this
taxonomy is not necessarily set in stone. For one thing, hybrid approaches are quite popular (for
instance, fixed effects instrumental variable approaches whereby some instrument is available for
the change in program participation over time). However, there are several alternative approaches
that may become increasingly prominent in years to come.

Perhaps chief among these are “Deeply Structural Models”. These are often applied to longitudi-
nal data with a focus on dynamic decision making, in which case the term “Dynamic Programming”
is often applied. Whatever the case, the key feature of this approach is that it involves the esti-
mation of a model of how the individual makes decisions that shape the outcome. Once the model
parameters are estimated, one could simulate behavioral choices under all sorts of new constraints
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and possibilities, including programs or policies that did not exist for the estimating sample. A
good example is Gilleskie (1998), who used a fitted dynamic programming model to simulate the
expected behavioral and health implications of various potential (but as of her writing untried)
national health care or insurance reform schemes.

Because they require potentially extensive assumptions regarding the behavioral process behind
individual decision making (i.e. the nature of welfare/utility functions, budget constraint functions,
health production functions, expectations formation processes and dynamic constraint and produc-
tion functions in the case of dynamic models, etc.) some have expressed skepticism regarding these
models. Their basic criticism is that models laden with so many assumptions are unlikely to provide
reliable inferences regarding program impacts. However, some attempts at validating these models
(e.g. Todd and Wolpin 2006) have quieted these criticisms to some degree.

Perhaps the biggest historical obstacles to the implementation of these models have been their
computational intensity and, particularly for dynamic programming models, a paucity of the sort
of longitudinal data most ideal as an estimation platform for these models. Both constraints are
easing as computers grow ever faster and the data infrastructure in higher and lower income societies
grows ever richer. As a result, these may become more popular as program impact evaluation tools
in years to come.

Finally, the emergence of non-traditional information sources such as social media may create
demand and scope for new impact evaluation methodologies. For instance, an innovative recent
paper (Kearney and Levine 2014) used information from “old” media sources (e.g. Nielsen ratings)
but also “new” social media (e.g. Twitter) to assess the impact of MTV’s1 program 16 and Pregnant
on teen childbearing. Evaluations such as these highlight the emerging possibilities offered by the
information generated by new media, including social media such as Twitter and Facebook (and
their international counterparts, such as Weibo). As the availability of these information sources
grows, there may well be need for methodological innovation.

7.3 Further Reading

This manual has provided an overview of methods for program impact evaluation that strove not
to presume much prior knowledge by the reader. As a result, many relationships and results the
background derivation of which is simply skipped in other treatments of this topic were explicitly
derived in this manual. This could be a grueling process (e.g. the explicit derivation of many
nonlinear instrumental variables models). Hopefully, the end result is that the reader has a better
grasp of the topic because they understand the foundation of so many important relationships and
results on which the discussion of impact evaluation methods turns.

Many readers might want to continue their journey learning about the methods covered in this
manual. Moreover, having completed this manual the reader is better positioned to participate in
a discussion of these methods that is a step up the complexity ladder from that in this manual
(which sought to convey a solid foundation in the essential properties and basic behavior of these
impact evaluation methods). For instance, the estimation of the variance of estimates and relative
efficiency are not topics on which we have long dwelt in this manual.

Clearly, the references at the end of the manual offer a starting point. However, among them we
would particularly recommend Angrist and Pischke (2009) as a next step. It too provides a review of
program impact evaluation methods (though one could argue that they more explicitly broaden the
focus to causal modelling in general). The topics covered in this manual overlap considerably with

1MTV, or Music Television, is an American cable network originally based on music videos but now more focused
on programming, especially so-called “reality” programming, aimed at teens.
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those in Angrist and Pischke (2009). The difference is that their discussion is at the next level (for
instance, it presumes understanding of many things explicitly explained and derived in this manual).
Despite this, it is still quite approachable by the standards of this literature. Moreover, Angrist
and Pischke (2009) is more editorial in nature, offering more normative (but in the case of both
authors very informed!) judgments about the tradeoffs between different estimation alternatives.
Developing some sense of opinion about these methods is important, and Angrist and Pischke do a
very good job introducing the reader to their world view without in any sense allowing it to distort
the discussion.

7.4 Impact Evaluation Meets Philosophy

At this point, some degree of cynicism on the reader’s part might be justified. A major implicit
message of this manual would seem to be that there is no “Gold Standard” method of impact
evaluation. All of the methods discussed involve assumptions, not all of which are testable, that
allow one to interpret the estimates generated by them as program impact (or, more broadly, as
reflecting a causal relationship). Some present inherent limitations in terms of the parameters that
can be estimated.

In the absence of a Gold Standard, it can be difficult to know what method is preferred. This is
why careful impact evaluation work is so important. One must have a good sense of the institutional
and environmental framework in which a program operates, as well as a good understanding of the
design and procedures of the program itself and the types of populations motivated to participate
and why they would be. This allows the evaluator to have an informed sense of what assumptions
are (probably) reasonable, and hence which impact evaluation methods might be preferred and how
much weight to assign to the estimates generated by them. It is true that even then assumptions
(or, at the least, certainly untestable assumptions) are glorified opinions, but they will at least be
informed opinions.

In closing, as a philosophical issue, it is important to remember that program impact evaluation
is not a creature like theoretical mathematics, with its appeal to the clear, beautiful (and occasion-
ally merciless) prospect of uncovering an absolute truth. Program impact evaluation is a statistical
exercise. And one can never prove anything statistically: all that can ever be generated is evidence.
Even the impact estimates generated by a “perfect” RCT still do not represent proof of anything.
Rather, those estimates constitute evidence. And evidence does not necessarily reveal truth: there
are many instances in the human story where an eventually revealed truth has proven surprising in
light of the available evidence to that point. Indeed, mere evidence often most readily lends itself
simply to the formation of opinion. It is therefore altogether natural that there should also be
scope for opinion about the most appropriate or credible manner in which to build evidence. Taken
against this fundamental backdrop, the complexities of the tradeoffs between impact evaluation
methods, as well as the pattern of ebb and flow in the popularity of alternative approaches, seem
more inevitable and less intrinsically intellectually concerning.
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