
On reuse of clusters in repeated studies

Stanislav Kolenikov∗ Gustavo Angeles†

November 6, 2005

Abstract

Suppose data for a survey with multi-stage design is to be collected
in two periods of time. This paper assesses the relative merits of keeping
the same clusters in the sample vs. sampling new clusters, under differ-
ent statistical (correlation between clusters and over time) and logistical
(costs of survey) scenarios. The design effect of re-using the same clusters
from the master sample over time is of the form 1−Aρπ/n where ρ is in-
tertemporal correlation of the cluster totals, n is the number of clusters, π
is the proportion of clusters retained from the previous round, and A > 0
is a fixed constant. As long as the efficiency gains appear to be minor,
the value of the designs that reuse the clusters comes from the logistical
(cost of the survey) considerations. Empirical demonstrations that use
Demographic and Health Survey (DHS) data for Bangladesh, 1996 and
2000, and a Monte Carlo simulation, are provided.

1 Introduction

In many situations, researchers or policymakers need to obtain information on
characteristics of population on multiple occasions, or several times, to study the
change in those characteristics and monitor the trends and current conditions.
As long as complex design surveys are the most frequently used source of such
information for a large population, such as a country as a whole, there is a
need to study the properties of complex sampling designs when the survey is
conducted in several points in time. Besides the standard considerations in
single-shot surveys, such as stratification and clustering, and their effect on
the cost and the estimate variances, there are additional concerns such as the
desirable overlap among consecutive samples, (informative) sample attrition,
conditioning effects, and other dynamic factors in the total survey error.

For the purposes of estimation of change from repeated surveys, it is often
desirable to have high temporal correlation of the observation units which can be

∗Department of Statistics, 146 Middlebush Hall, University of Missouri, Columbia, MO
65211-6100. Email: kolenikovs@missouri.edu.

†CB# 7445, Rosenau Hall, University of North Carolina, Chapel Hill, NC 27599-7445.
Email: gangeles@email.unc.edu.

1



achieved by administering the survey to the same sampling and/or observation
units. The most popular survey design formats appear to be the longitudinal,
or panel, surveys, where the same units (individuals, households) are revisited
for several periods, potentially indefinitely many periods (studies like Panel
Study of Income Dynamics (PSID), British Household Panel Study (BHPS)
and others1); rotating panel where the units are recruited into the sample for
a few periods, then rotated out of the sample, and interviewed again at a later
time (Current Population Survey, CPS), or studies where only primary units are
retained from one period to the next (Demographic and Health Survey, DHS).

The earliest paper to consider sampling on multiple occasions appears to
be Jessen (1942), which considered single stage surveys at two occasions. This
work was extended to multiple occasions by Yates (1949) who assumed that
observations for each unit followed a stationary AR(1) process. Patterson (1950)
studied a single stage survey on several occasions and estimation of the means for
each occasion, assuming arbitrary correlation structure. He derived the efficient
estimates of the contemporary means that use information from other periods
(composite estimators), and efficient estimates of the change between the two
last periods. Singh (1968) considered multi-stage designs for sampling on several
occasions and discussed how the fractions of the earlier samples should be used
in the later occasions, and applied his results to the analysis of an agricultural
survey that is subjected to heavy seasonal variations.

The literature since the 1950s has mostly been devoted to the studies of
rotating designs (Eckler 1955, Rao & Graham 1964, Binder & Hidiroglou 1988).
Those designs compromise between accuracy in change estimation of the panel
designs where the same units are interviewed over time, and deterioration of
the sample quality as a consequence of sample attrition due to response burden,
changes in the measurement process (time in sample, or conditioning effects, as
the respondent behavior changes due to the fact that they are studied), and due
to loss of population coverage due to underlying population changes.

A lot of research related to the rotating designs is devoted to Current Pop-
ulation Survey that uses 4-8-4 rotating design (Binder & Hidiroglou 1988, U.S.
Census Bureau 2002) where units (households) are interviewed each month for
4 months, then receive a rest from the response burden for 8 months, and then
interviewed for 4 months again. At each month, there are 8 cohorts of house-
holds recruited at different points in time, and this design achieves an overlap
of 3/4 of the sample for estimates of the monthly changes, and 1/2 for estimates
of annual changes.

Another large area of the rotating design applications is natural resource
research, where a need arises to assess changes in forestation or agricultural
health (McDonald 2003, Fuller 1999). The designs that have become popular
in this area are sampling with partial replacement (SPR) designs (Scott 1998).
In those designs, the plots established at each of the previous occasions are
sampled and remeasured at the current occasion; in other words, at every time

1 A compendium of information on the longitudinal studies can
be found at Institute for Social and Economics Research web site,
http://iser.essex.ac.uk/ulsc/keeptrack/index.php.
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t there are units that were first sampled at each of the previous times t−1, t−2,
. . . and the newly added plots. Such designs allow for efficient estimation of
both the current characteristics, and the change relative to any of the previous
periods.

Most of the analysis of the above designs concentrates on efficiency of the
design in terms of variance. Another important practical consideration is the
implementation cost (Groves 1989). The traditional cost models such as those
used in derivation of Neyman-Tchuprow optimal allocation design (Neyman
1938) will now have to include terms related to the cost of the first visit to
the cluster and/or ultimate interview unit, as well as the cost of consecutive
visits, and the cost of follow-up. It can be argued that the costs of interviewing
individuals on the occasions after the first one are greater than on the first
occasion (the household may have moved out, so it needs to be located again
in another part of the geographic area; they may be unwilling to be interviewed
again; etc.), while the cost of revisiting the cluster may be lower (there is no
need to do the maps all over again; the cooperation with the community leaders
and/or individual respondents has already been established earlier; accuracy of
the previously collected data may be improved on revisits).

An additional concern almost inevitably raised in economic literature, espe-
cially in the area of program evaluation, is the issue of endogeneity and unob-
servable characteristics. For that purpose, the panel studies provide an excellent
tool to condition on the unobserved characteristics with the fixed effects and
difference-in-difference (DID) estimators. A general review of the program eval-
uation methods can be found in Wooldridge (2002, Ch. 18), and for DID meth-
ods in particular, see Bertrand, Duflo & Mullainathan (2004). The papers that
were taking into account the cluster structure of the sample and cluster level
characteristics include Angeles, Guilkey & Mroz (1998) and Pitt, Rozenzweig &
Gibbons (1993).

This paper was motivated by the design of Demographic and Health Sur-
veys2, a U.S. Agency of International Development sponsored project that col-
lects the family planning, maternal health, child survival, HIV/AIDS and other
health information on over 70 developing countries. The surveys are highly
standardized (subject to translation of the instruments into the country home
languages). The sampling design includes stratification (by region and urban-
icity) and clustering (by settlements). Typical sample sizes vary between 5,000
and 30,000 households. The particular intertemporal aspect of the design is
that the same clusters are revisited about every 5 years. A large period of time
between consecutive interviews makes it impractical to locate the households in-
terviewed previously, and new samples are taken at each of the locations. Thus
there is a considerable overlap in the first stage sampling, while the second stage
samples are taken independently.

This paper is devoted to the analysis of the designs that feature the repeated
use of the clusters from the master sample of PSUs, like in the design of De-
mographic and Health Surveys. We shall refer to such designs as cluster-panel

2 See http://www.measuredhs.com.
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designs. and is structured as follows. Following the introduction (Section 1),
Section 2 describes a very basic setting of a simple random sampling (SRS)
repeated on two occasions, and Section 3 adds the cost considerations for this
design. Then Section 4 introduces clustered designs, Section 5 considers sam-
ples taken at two occasions, and Section 6 derives the costs of those designs.
Sections 7 and 8 illustrate the considered designs and estimators with an em-
pirical example based on DHS data and on Monte Carlo simulations. Section 9
concludes.

2 Simple setting: one-stage sampling
with replacement

The simplest setting to be analyzed is that of two samples from the same pop-
ulation of individuals with some overlap between them admitted by design.
Suppose a sample of n individuals is taken with replacement3 from the popula-
tion of size N at time t = 1. Then the mean of the quantity of interest y1 is
estimated as

ȳ1 =
1
n

n∑
i=1

y1i (2.1)

It is an unbiased estimator of the population quantity

Ȳ1 =
1
N

n∑
j=1

y1j (2.2)

with variance
V[ȳ1] =

1
n

S2
1 (2.3)

where

S2
1 =

1
N − 1

N∑
j=1

(
y1j − Ȳ1

)2 (2.4)

is the population variance of the quantity.
Suppose the second sample is taken in the next period of time, t = 2.

Suppose also that there is no change in the population composition, and the
characteristics y2j of the population individuals change in such a way that the
population variance

S2
2 =

1
N − 1

N∑
j=1

(
y2j − Ȳ2

)2 (2.5)

3 Realistically, most samples are performed without replacement (WOR). The with re-
placement (WR) assumption, however, simplifies the analytic arguments and provide con-
servative variance estimates. The difference between the variances obtained from samples
with and without replacement can usually be expressed in terms of the sampling fractions
f = n/N , so for one-stage simple random sample, the relation between the two variances is

VWOR[x̄] = (1 − f) VWR[x̄]. If the sampling fraction is small (say f < 10%) as in most large
surveys, the difference can be ignored.
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does not change, S2
2 = S2

1 = S2. (A simple case is when y2j = y1j + a for some
constant a.)

Suppose we are going to take the sample of the same size, n, in the second
period. The design option that the researcher can control is the overlap of the
new sample with the sample at time t = 1. Let us denote the proportion of
observation taken from the first sample as 0 ≤ π ≤ 1, and rearrange observa-
tions so that the first (1 − π)n observations are those taken at time t = 1 and
abandoned after that; then the next πn observations are those taken at both
t = 1 and t = 2 by design; and the remaining (1 − π)n observations are those
taken at time t = 2 only by sampling with replacement independently from
those retained from the previous period. 4 Then a natural unbiased estimator
of the change Y2 − Y1 is the difference of the sample averages (also called an
elementary estimate, c.f. composite estimate later):

δ̂ = ȳ2 − ȳ1 (2.6)

and it can be decomposed into terms corresponding to independent and over-
lapping samples:

δ̂ =
1
n

(
−

(1−π)n∑
i=1

y1i +
n∑

i=(1−π)n+1

(y2i − y1i) +
(2−π)n∑
i=n+1

y2i

)
(2.7)

By using the fact that the subsamples are independent from each other the
variance of this estimator can be obtained as follows:

V
[
δ̂
]

=
1
n2 E

(
−

(1−π)n∑
i=1

(y1i − Ȳ1) +
n∑

i=(1−π)n+1

(y2i − y1i − Ȳ2 + Ȳ1) +
(2−π)n∑
i=n+1

(y2i − Ȳ2)

)2

=
1
n2 E

(
(1−π)n∑

i=1

(y1i − Ȳ1)2 +
n∑

i=(1−π)n+1

(y2i − y1i − Ȳ2 + Ȳ1)2 +
(2−π)n∑
i=n+1

(y2i − Ȳ2)2
)

=

=
1
n2

[
(1− π)nS2 + πn2S2(1− ρ) + (1− π)nS2

]
=

2(1− πρ)S2

n
(2.8)

where ρ is the correlation of the measurements over time,

1
N − 1

N∑
j=1

(y1i − Ȳ1)(y2i − Ȳ2) = ρS2 (2.9)

For any level of ρ, the lowest variance is achieved by setting π = 1, i.e., by
conducting a panel study.

Other possible estimators of the mean and change can be found in the class
of composite estimators (Hansen, Hurwitz & Madow 1953, Rao & Graham 1964,

4 The assumption of sampling with replacement is crucial here, as the composition of two
independent WR samples is a WR sample. However, the composition of two independent
WOR samples is not guaranteed to be a sample without replacement.

5



Wolter 1979) that use information from several observation occasions to estimate
the contemporary mean:

ȳ2α = (1− α)ȳ2 + α(ȳ2,π + ȳ1α − ȳ1,π) (2.10)

where subindices 1, π and 2, π denote the sample means taken over the over-
lapping parts of the sample. As long as no observations were available prior
to t = 1, ȳ1α = ȳ1, so the estimator would be better referred to as one-step
composite estimator. The sampling variance of this estimator can be found as

V
[
ȳ2α

]
= V

[1− α

n

(2−π)n∑
i=(1−π)n+1

y2i +
α

πn

n∑
i=(1−π)n+1

y2i +
α

n

n∑
i=1

y1i −
α

πn

n∑
i=(1−π)n+1

y1i

]
=

= V
[(2−π)n∑

i=n

1− α

n
y2i +

n∑
i=(1−π)n+1

( α

πn
+

1− α

n

)
y2i+

+
(1−π)n∑

i=1

α

n
y1i −

n∑
i=(1−π)n+1

α(1− π)
πn

y1i

]
=

=
S2

n

[
(1− α)2(1− π) + α2(1− π)+

+π−1
(
(α + π − απ)2 + α2(1− π)2 − 2ρ(α + π − απ)α(1− π)

)]
(2.11)

It can be minimized over α to achieve the optimal design:

∂ V
[
ȳ2α

]
∂α

=
2S2

n

[
−(1− α)(1− π) + α(1− π)+

+π−1
(
(1− π)(α + π − απ) + α(1− π)2 − ρ(1− π)(2α + π − 2απ)

)]
,

α∗ =
ρπ

2(1− ρ(1− π))
(2.12)

This can be plugged back to (2.10) and (2.11) for the optimal estimate of the
mean and its variance. Jessen (1942) found that the optimal overlap between
two samples is achieved at approximately

π

1− π
= (1− ρ2)1/2 (2.13)

and reported efficiency gains between 22% and 45% in his agricultural applica-
tion. Note that when ρ = 0 or π = 0, the estimator boils down to the usual
mean of the second sample.

A one-step composite estimate of the change is the following:

δ̂α =
1
n

[
(1+πα)

(
−

(1−π)n∑
i=1

y1i +
(2−π)n∑
i=n+1

y2i

)
+(1−(1−π)α)

n∑
i=(1−π)n+1

(y2i−y1i)
]

(2.14)
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for some α. When α = 0, the estimator coincides with the elementary estimate
(2.6). The weights 1+πα and 1−(1−π)α ensure that the estimator is unbiased
for the change in population means, and the variance can be derived, similarly
to (2.8), as

V
[
δ̂α] =

2S2

n

[
(1 + πα)2(1− π) + (1− (1− π)α)2π(1− ρ)] (2.15)

This expression can now be minimized over π and α:

∂ V
[
δ̂α]

∂α
=

4S2

n

[
(1− π)π(1 + πα)− (1− α + πα)(1− π)π(1− ρ)

]
,

α∗(ρ, π) = − ρ

1− ρ(1− π)
(2.16)

When this optimal α∗ is substituted into (2.15), the variance of interest becomes

V
[
δ̂α∗ ] =

2S2

n

1− ρ

1− ρ(1− π)
(2.17)

which is decreasing in π over [0, 1]. Thus the minimum is again attained for
the panel setting with all observations retained from the first round of observa-
tion. Then the first two sums in (2.14) disappear, and the one-step composite
estimator coincides with the elementary estimate (2.6).

For π < 1, the one-step composite estimator is more efficient than (2.6);
the difference is of the order O(ρ2) for small ρ. The efficiency gain is greater
than 20% only for relatively high correlations (ρ > 0.63); in the extreme case
of ρ = 1, the one-step composite estimator has a variance of zero, while the
elementary estimate still has non-zero variance.

The efficiency advantages of the rotation designs and corresponding com-
posite estimators are, at least to some extent, counterweighed by the rotation
bias, or conditioning, which is the effect of presence in the sample for several
occasions that changes the behavior of the observed unit. Thus the estimates
coming from different panels of a rotation sample may not have the same sta-
tistical properties. This bias is a part of non-sampling error and thus is outside
of the randomization based inference paradigm. The issue may be less of a
problem with DHS as it only reuses the clusters rather than individual observa-
tions in the sample, and the period of time between consecutive rounds of data
collection is quite large (5 years).

3 One-stage sampling with replacement
and varying costs

The preceding analysis does not take into account the possibility of varying costs
in two periods of time. Suppose the unit cost of observing the unit at the first
stage only is c1, the unit cost of observing the unit at both stages is c12, and the
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unit cost of observing the unit only in the second stage is c2. Then the optimal
design for the elementary estimator is derived from the following minimization
problem:

2(1− πρ)S2

n
→ min

n,π

s.t. c1(1− π)n + c12πn + c2(1− π)n ≤ C0 (3.1)

where C0 is the part of the budget allowed for the varying costs. For a given π,
the sample size can be found from the cost equation:

n =
C0

c1 + c2 + π(c12 − c1 − c2)
(3.2)

so the minimization equation becomes

V (π; ρ) =
2(1− πρ)(c1 + c2 + π[c12 − c1 − c2])

C0
→ min

π∈[0,1]
(3.3)

If c12 6= c1 + c2, this equation gives a parabola with the center at

π∗ =
c12 − c1(1 + ρ)− c2(1 + ρ)

2ρ(c12 − c1 − c2)
=

1
2ρ
− 1

2
[

c12
c1+c2

− 1
] (3.4)

Let us now consider three special cases.

1. c12 < c1 +c2. Even though this relationship does not seem plausible, since
tracking individuals tends to add extra expenses to the survey budget, it
will make more sense for the clustered samples when it might be cheaper
to revisit the already sampled location than to prepare the maps and the
frame for a new one.
In this case, π∗ gives the location of the minimum. As long as ρ ≤ 1, and
0 < c12 < c1 +c2, both of the terms in the last equality of (3.4) are greater
than 1/2, so π∗ > 1, and the objective function is decreasing to the left of
1. Hence the minimum over [0, 1] is achieved at π = 1.

2. c12 = c1 + c2, there are neither extra costs nor extra savings associated
with the panel mode of data collection. In this case the objective function
is linear: V[δ̂] = 2(1 − πρ)(c1 + c2)/C0, and the optimal solution to it
is π = 1. This case is equivalent to the one considered in the previous
section where the question of costs did not arise.

3. c12 > c1 + c2. For this most realistic case, when the logistic of finding the
same individuals for a panel study implies additional costs, the objective
function in (3.3) is a parabola with downward branches, and π∗ given by
(3.4) determines the maximum of it. Hence the minimization problem
(3.3) has a corner solution at either 1 or 0, depending on which of those
two points is further from the maximum.
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A simple way to solve the problem is then to compare those two corner
solutions:

V (0; ρ) =
2(c1 + c2)

C0
,

V (1; ρ) =
2(1− ρ)c12

C0
(3.5)

so the optimal solution is then

π =


0, c1 + c2 < (1− ρ)c12, or ρ < 1− c1 + c2

c12

1, c1 + c2 > (1− ρ)c12, or ρ > 1−
c1 + c2

c12

(3.6)

When c1 + c2 = (1 − ρ)c12, both sample designs with π = 0 and π = 1
give the same variance.

The last case shows that the sample designer must have an accurate under-
standing of the underlying data process to decide between collecting the data
from two completely independent samples (π = 0, small ρ) and collecting the
panel data (π = 1, high ρ).

For the one-step composite estimator of the difference (2.14), the minimiza-
tion problem is

2S2

n

1− ρ

1− ρ(1− π)
→ min

n,π

s.t. c1(1− π)n + c12πn + c2(1− π)n ≤ C0 (3.7)

Making the same substitution for n, one gets the equivalent minimization prob-
lem

2S2

C0

(1− ρ)(c1 + c2 + π(c12 − c1 − c2))
1− ρ(1− π)

→ min
π

(3.8)

The first derivative of the objective function is

2S2

C0

(1− ρ)((1− ρ)c12 − c1 − c2)
(1− ρ(1− π))2

(3.9)

which is negative for (1−ρ)c12 < c1 + c2, and hence the panel design is optimal;
and positive for (1−ρ)c12 > c1+c2, and hence independent sampling is optimal.
The elementary and one-step composite estimates thus have the same design
efficiency requirements, as the above conditions are identical to those considered
in (3.6) for the elementary estimate.
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4 Clustered samples

In this section, we describe the basic aspects of variance and its estimation for
a two-stage clustered sample.

A sample is said to be clustered if the primary sampling unit (PSU) is not
the observation unit, but a group of such units. Samples are usually collected in
the clustered manner if no listing of individual units is available, or such listing
is prohibitively difficult or expensive to obtain. Instead, geographic areas with
a large number of observation units are enumerated and sampled, possibly with
unequal selection probabilities. Further, all units of a cluster may be observed,
or samples can be taken within those clusters, either in the cluster form again,
or as a SRS if a list of units can finally be obtained. In DHS studies, the
clusters (PSUs) are the communities, the secondary sampling units (SSUs) are
the dwelling units, and all individuals are observed within the SSUs.

Why are the clustered samples used in practice? Typically, the variances
obtained from clustered samples are higher than from an SRS of the same size,
because units within clusters tend to be similar, and thus measurements taken on
those units tend to be positively correlated. Since there is not enough variability
among them, the effective number of distinct observations is smaller than the
sample size. The measure of differences is referred to as the design effect (Kish
1965):

DEFF = V[design, n]
V[SRS, n]

(4.1)

It can be shown (see Thompson 1992, p. 122; Hansen, Hurwitz and Madow,
1953, vol. II, sec. 6.5; or Kish (1965)) that the design effect for the clustered
sample is approximately

DEFF ≈ 1 + ρ(m̄− 1) (4.2)

where m̄ is the average number of units per cluster, and ρ is the measure of
cluster homogeneity, or within-cluster correlation, or intraclass correlation. See
the operational definition below in (4.15).

The primary advantage of the clustered samples, however, is that they are
usually substantially cheaper to administer than SRS, yet still give reasonable
precision if designed with the above considerations on design effects are kept
in mind. A successful clustered sample will have design effects smaller than 2,
meaning that the increase of the variance relative to the simple random sample
of the same size is at most by a factor of two, or that the researchers had to
take at most twice as many observations to achieve a desirable margin of error.
Unfortunately, for community-level variables, such as access to electricity, the
design effects will inevitably be above 10 reflecting the fact that the individuals
within the community are almost perfectly correlated (typically, nearly every-
body has electric power, or practically no one has), and the effective sample size
is then the number of PSUs.

For the following analysis, assume a two-stage cluster equal probability of
selection (epsem) design where the finite population corrections may be ignored
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(i.e., either the sampling is with replacement, or sampling fractions at each
stage are small. The resulting variance formulae will be conservative for real
samples without replacement). Such design can be obtained by selecting SRS
at both stages; more complicated probability designs will produce conceptually
the same results attenuated by weights.

Let us denote the clusters by i, so that there are N clusters in the population
and n clusters in the sample. Let us enumerate the observations within i-
th cluster by j, so that j = 1, . . . ,Mi for i-th cluster in population, and j =
1, . . . ,mi in the sample. The sampling fractions are fi = mi/Mi within clusters,
and fI = n/N is the fraction of clusters sampled. j-th observation in i-th cluster
is denoted as Yij in the population or yij in the sample.

The totals and their estimates can then be found as follows:

T [Y ]i· = Yi· =
Mi∑
j=1

Yij , (4.3)

t[y]i· = yi· =
Mi

m

Mi∑
j=1

yij , (4.4)

T [Y ]·· =
N∑

i=1

Yi· , (4.5)

t[y]·· =
N

n

N∑
i=1

yi· (4.6)

Yij can be any individual level characteristic. One special case is Yij = 1, and
T [1]·· is the total population size, T [1]i· = Mi is the size of i-th cluster, and
corresponding t are their (unbiased) estimators.

The means per observation units are

Ȳi· =
1

Mi

Mi∑
i=1

Yij =
Yi·

Mi
, (4.7)

ȳi· =
1

Mi

Mi∑
i=1

yij =
Y··

NM̄
(4.8)

Ȳ·· =
T [Y ]··
NM̄

=

N∑
i=1

Mi∑
j=1

Yij

NM̄
(4.9)

ȳ·· =
t[y]··
nm̄

=

n∑
i=1

mi∑
j=1

yij

nm̄
(4.10)

where

M̄ =
1
N

N∑
i=1

Mi (4.11)
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is the average size of the cluster, with the appropriate sample analogue m̄.
Note that the estimator of the mean (4.10) is a ratio estimator: both the

numerator and the denominator are random variables design-unbiased for their
population analogues.5 As it is a nonlinear function of unbiased estimators, it is
no longer unbiased for the population quantity it estimates, but it is a consistent
estimator as the number of clusters n → ∞, and is approximately unbiased in
large samples.

The variance of Y and its within- and between-cluster components are

S2 =

N∑
i=1

Mi∑
j=1

(Yij − Ȳ··)2

NM̄ − 1
, (4.12)

S2
wi =

Mi∑
j=1

(Yij − Ȳi·)2

Mi − 1
, (4.13)

S2
b =

N∑
i=1

(Ȳi· − Ȳ··)2

N − 1
(4.14)

The intraclass correlation, one of the determinants of the design effect (4.2),
is the share of variance due to clustering:

ρ =

N∑
i=1

Mi∑
j=1

∑
j 6=j′

(Yij − Ȳ··)(Yij′ − Ȳ··)

(M̄ − 1)(NM̄ − 1)S2
=

(N − 1)M̄2S2
b −N(M̄ − 1)S2

w

(M̄ − 1)(NM̄ − 1)S2
≈

≈ S2
b − S2/M̄

(M̄ − 1)S2/M̄
(4.15)

when N � 1.
Variance of the total t·· is (Hansen et. al. 1953, v.2, sec. 6.1; Särndal et. al.,

1992, sec. 4.3)

V[t··] = N2 1− fI

n
S2

b + N/n
n∑

i=1

M2
i

1− fi

mi
S2

wi (4.16)

The most traditional analytical way to obtain the variance (or, to be pre-
cise, the mean squared error) of a ratio estimator such as (4.10) is to use the
linearization, also known as Taylor series expansion, or the delta method. If a
ratio R = T [Y ]/T [X] of two totals is estimated by r = t[y]/t[x], then the first
order expansion is given by

5 It is rather hard to think of the sample size as a random variable, but it is such in
most survey contexts if a fixed number of observations per cluster is not specified in advance.
Variability in the sample size is a subtle but important component of the overall variance.
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r(t[x], t[y]) = t[y]/t[x] = R(T [Y ], T [X]) +
∂R

∂T [X]
(t[x]− T [X])+

∂R

∂T [Y ]
(t[y]− T [Y ]) + op(t[x]− T [X], t[y]− T [Y ]) (4.17)

so upon computing the appropriate derivatives

∂R

∂T [X]
= − T [Y ]

T [X]2
,

∂R

∂T [Y ]
=

1
T [X]

(4.18)

the variance (MSE) of the estimate can be found as

MSE[r] = E[r−R]2 ≈
(

T [Y ]
T [X]

)2

V
[
t[x]
]
+

1
T [X]2 V

[
t[y]
]
−2

T [Y ]
T [X]3

Cov
[
t[y], t[x]

]
(4.19)

and an estimate of this variance is found by replacing the totals, variances and
covariances by their unbiased estimators. In estimation of the mean per unit,
the second variable, Y , is set to 1, so its variance is the variance of the estimator
of the total population size,

V
[
t[1]
]

=
1

N − 1

N∑
i=1

M2
i

m2
i

(mi − m̄)2 (4.20)

This shows an important fact in cluster sampling: the number of units per
cluster should be about the same to minimize this component of variance. A
sampling scheme that controls the average cluster size should result in low overall
variance.

One such scheme is probability proportional to size method of selection (PPS).
If the sizes of the clusters Mi are known before sampling, or some measure of
cluster size is available instead, the probability of selecting i-th cluster can be
taken as

Prob[i] =
n

N
Mi (4.21)

and probability of selecting a unit j from selected cluster i, as

Prob[j|i] = m/Mi (4.22)

where m is the fixed number of units selected from each cluster. Then the total
probability of selection for unit j in i-th cluster is

Prob[ij] =
n

N
Mi

m

Mi
=

nm

N
= const (4.23)

is the same for all ultimate sampling units, and the design is both self-weighting
(epsem), and efficient for variance, as it eliminates the component of variance
related to the variability in the sample size.
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If we make an additional assumption that the sampling fractions are the
same across clusters (fi = fII), the variance of the mean y·· can be obtained as
the variance of the ratio estimator by linearization (or delta) method; see Korn
& Graubard (1999, p. 27), Thompson (1992, p. 116):

V[y··] ≈
1

m̄2N(n− 1)

N∑
i=1

m2
i (Ȳi· − Ȳ··)2 (4.24)

If we compare it to the näıve estimate implied by the simple random sample,

V[SRS, n] =
S2

n
(4.25)

the design effect can be obtained in the form (4.2). Note that if clusters are
similar to one another (S2

b is small), and there is a lot of variability within
each cluster (S2

wi are all large), then ρ < 0, and clustered sampling design is in
fact more efficient than SRS. In that case, the optimal design is to sample as
few clusters as possible, and take as many observations per cluster as possible.
In most practical cases, however, the clusters can be expected to be rather
homogeneous (in terms of population sampling, think of differences within the
community vs. differences between communities), so a better design would be
to sample many clusters and a few observations per cluster.

The relation between the cluster size and the resulting design effect is some-
what more complicated than may seem from (4.2) as increase in the cluster size
usually leads to a greater diversity of the units within it, and hence to smaller
within-cluster correlations. Thompson (1992, Sec. 12.5) discusses the size of the
intraclass correlation that appears in (4.15), and argues that ρ is higher in small
clusters, and in relatively compact (say square) clusters compared to needle-like
clusters that have units further apart, and thus less correlated.

5 Repeated cluster samples

Suppose now that the survey is repeated over time, so that there are at least
two waves of data. Denote the time by an upper index: Y

(t)
ij , t = 1, 2, . . .

The quantity of interest to the researcher would be the difference in pop-
ulation totals or, more often, averages per observation unit of characteristic
Y :

D[Ȳ (2) − Ȳ (1)] =
T [Y (2)]
T [1(2)]

− T [Y (1)]
T [1(1)]

(5.1)

This is often an important policy measure, such as changes in the contraceptive
use, mortality or fertility between years of data collection. The time notation
on the unit variable shows that the population size may change over time.

In terms of the previous section, expression (5.1) corresponds to the ele-
mentary estimate of the change. The composite estimates do not seem to be
frequently used in large surveys, as computing those estimates will either re-
quire supplying a new set of weights by the institution collecting the data, or

14



estimating the intertemporal correlation coefficient by the user of the data. Any
of those procedures will be specific to the difference being estimated, and will
tend to be rather cumbersome.

For general ratio estimators of y/x, the estimator of (5.1), although biased
in finite samples, is the difference of the corresponding ratio estimators:

d[ȳ(2) − ȳ(1)] =
t[y(2)]
t[x(2)]

− t[y(1)]
t[x(1)]

= d
(
t[y(2)], t[y(1)], t[x(2)], t[x(1)]

)
(5.2)

and its variance is

V
[
d[y(2)−y(1)]

]
= V

[T [Y (2)]
T [X(2)]

]
+V

[T [Y (1)]
T [X(1)]

]
−2 Cov

[T [Y (2)]
T [X(2)]

,
T [Y (1)]
T [X(1)]

]
(5.3)

The linear approximations for the first two terms of (5.3) are given by (4.19).
If the samples in different periods are taken independently of one another, then
the third term is zero. The case we are interested in, however, is when the
clusters from the first sample are reused, at least partially, in the second sample.

Rather than trying to compute the covariance term explicitly, we can take
the first order Taylor series expansion:

V
[
d[y(2) − y(1)]

]
≈ ∇T d

(
T [Y (2)], T [Y (1)], T [X(2)], T [X(1)]

)
×

×Cov
[(

T [Y (2)], T [Y (1)], T [X(2)], T [X(1)]
)T ]∇d

(
T [Y (2)], T [Y (1)], T [X(2)], T [X(1)]

)
≡

≡ DT CD (5.4)

where ∇d
(
t[y(2)], t[y(1)], t[x(2)], t[x(1)]

)
≡ D is the gradient of d(·) with entries

∂d

∂t[y(2)]
=

1
t[x(2)]

,
∂d

∂t[y(1)]
= − 1

t[x(1)]
,

∂d

∂t[x(2)]
= − t[y(2)]

t[x(2)2]
,

∂d

∂t[x(1)]
=

t[y(1)]
t[x(1)2]

(5.5)

and
C = Cov

[
(t[y(2)], t[y(1)], t[x(2)], t[x(1)]

)T ] (5.6)

is the covariance matrix of the four variate vector of totals. The approximation
in (5.4) is due to linearization, and all terms in it are evaluated at the population
totals.

In particular, the cross-covariance term of (5.3) can now be found as
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Cov
[ t[y(2)]
t[x(2)]

,
t[y(1)]
t[x(1)]

]
≈

≈ ∂d

∂t[y(2)]
∂d

∂t[y(1)]
Cov

[
t[y(2)], t[y(1)]

]
+

∂d

∂t[y(2)]
∂d

∂t[x(1)]
Cov

[
t[y(2)], t[x(1)]

]
+

∂d

∂t[x(2)]
∂d

∂t[y(1)]
Cov

[
t[x(2)], t[y(1)]

]
+

∂d

∂t[x(2)]
∂d

∂t[x(1)]
Cov

[
t[x(2)], t[x(1)]

]
=

=
1

T [X(1)]T [X(2)]

{
Cov

[
t[y(2)], t[y(1)]

]
− T [Y (1)]

T [X(1)]
Cov

[
t[y(2)], t[x(1)]

]
−T [Y (2)]

T [X(2)]
Cov

[
t[x(2)], t[y(1)]

]
+

T [Y (2)]
T [X(2)]

t[y(1)]
t[x(1)]

Cov
[
t[x(2)], t[x(1)]

]}
(5.7)

By the law of iterated expectations, each of covariances in the last expression
is of the form

Cov
[
t[ξ(2)], t[ζ(1)]

]
=

= EI

{
CovII

[
t[ξ(2)], t[ζ(1)]|I

]}
+ CovI

{
EII

[
t[ξ(2)]|I

]
, EII

[
t[ζ(1)]|I

]}
(5.8)

where indices I and II represent the first and the second stages of the sampling,
respectively. The first conditional covariance is zero, as long as sampling at the
second stage is performed independently across waves. Then, say,

EII

[
t[ξ(2)]|I

]
=

N

n

n∑
i=1

Ξ(2)
i· (5.9)

is the estimate of the total based on the population mean from clusters in the
sample. (There is a subtle abuse of notation here: the capitalized quantities refer
to the population parameters, but here we have to mix together the population
parameters (cluster totals) Ξi· and the sample elements indexed by i, due to
the conditioning on the particular sample of PSUs chosen at the first stage.)
Suppose a fraction of π of the original clusters are reused in the second wave of
the survey (c.f. Section 2). Then

Cov
[
t[ξ(2)], t[ζ(1)]

]
= CovI

{
EII

[
t[ξ(2)]|I

]
, EII

[
t[ζ(1)]|I

]}
=

=
N2πn

n2
Cov

[
Ξ(2)

i· ,Z(1)
i·
]

=
πN2

(N − 1)n

N∑
i=1

(Ξ(2)
i· − Ξ̄(2)

i· )(Z(1)
i· − Z̄(1)

i· ) (5.10)

is the population covariance between the cluster means over two time periods,
where

Ξ̄(t)
i· =

1
N

N∑
i=1

Ξ(t)
i· ≈ M̄ Ξ̄(t)

·· (5.11)
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etc., and the latter approximate equality holds if clusters are about the same
size M̄ .

For further analysis, we shall return to the case when xij = 1, and also make
a simplifying assumption that the design is fixed size, so V

[
t[x(t)]

]
= 0, t =

1, 2, . . .. Then the covariance term in (5.3) is comprised only of the covariances
between y’s in two time periods:

Cov
[ t[y(2)]
t[x(2)]

,
t[y(1)]
t[x(1)]

]
≈

Cov
[
t[y(2)], t[y(1)]

]
T [X(1)]T [X(2)]

≈

≈
N2π Cov

[
Y

(2)
i· , Y

(1)
i·
]

(NM̄)2n
=

π Cov
[
Y

(2)
i· , Y

(1)
i·
]

M̄2n
(5.12)

where the first approximation is the linearization / Taylor series expansion for
the covariance in question, and the second one is the linearization / Taylor series
expansion for the covariance in the numerator.

Combining this result with (5.3), we obtain

V
[
d[y(2) − y(1)]

]
=

=
1

T [X(2)]2 V
[
t[y(2)]

]
+
(

T [Y (2)]
T [X(2)]

)2

V
[
t[x(2)]

]
− 2

T [Y (2)]
T [X(2)]3

Cov
[
t[x(2)], t[y(2)]

]
+

+
1

T [X(1)]2 V
[
t[y(1)]

]
+
(

T [Y (1)]
T [X(1)]

)2

V
[
t[x(1)]

]
− 2

T [Y (1)]
T [X(1)]3

Cov
[
t[x(1)], t[y(1)]

]
−

−2
π Cov

[
Y

(2)
i· , Y

(1)
i·
]

M̄2n
(5.13)

For a fixed size design, V[t(x(1))] = V[t(x(1))] = 0, and (5.13) simplifies to

V
[
d[y(2) − y(1)]

]
=

=
1

N2M̄2 V
[
t[y(2)]

]
+

1
N2M̄2 V

[
t[y(1)]

]
− 2

π Cov
[
Y

(2)
i· , Y

(1)
i·
]

M̄2n
(5.14)

If the last covariance is positive (i.e., the clusters with higher values of Y in
the first period continue to have higher values in the second period), then the
re-use of clusters will be decreasing variance: the higher the proportion of reused
clusters π, the lower the total variance (5.14), provided the first two terms of
(5.14) do not change across the designs with varying π. Again, if the sampling
is performed independently in the two waves of data collection, the last term is
zero. Setting it to zero also corresponds to the näıve estimator of the difference
variance that does not account for the longitudinal nature of the data collection
process. Thus the design effect of repeated sampling that compares the näıve
estimate with the appropriate one is

DEFFr = V[repeated design]
V[independent sampling]

= 1− 2
π Cov

[
Y

(2)
i· , Y

(1)
i·
]

n(V
[
t[y(1)]

]
+ V

[
t[y(2)]

]
)/N2

(5.15)
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so the correction is in fact of the order O(n−1), and the repeated sampling
design effect is going to be small unless the number of clusters is small (say
20 or less), which is against the standard clustered design recommendation of
having many clusters with few observations per cluster. The näıve variance
estimator is conservative for positive Cov

[
Y

(2)
i· , Y

(1)
i·
]
, and is consistent when

n →∞.

6 Costs for repeated cluster samples

This section will analyze the cost efficiency of clustered samples when one wants
to estimate the difference between two sample means from two different periods.

Some discussion of the costs of cluster sampling is given in Thompson (1992,
Sec. 12.5), and more mathematical details are available in Hansen et al. (1953,
vol. II, sec. 6.11), with the variance formulas corrected for finite populations.

In DHS, at least in the rural areas, clusters arise naturally as villages or
communities.

Let us assume the following cost structure:

• cI
1 is the cost of sampling and collecting the community data at time t = 1

for clusters that are used in the first wave only ;

• cII
1 is the cost of sampling and interviewing an individual at time t = 1;

• cI
2 is the cost of sampling a new cluster at time t = 2;

• cII
2 is the cost of sampling and interviewing an individual at time t = 2;

• cI
12 is the cost of sampling and collecting the data for clusters that have

the data collected in both periods t = 1 and t = 2.

We could have also distinguished the second stage costs for the second period
for the individuals sampled from the new or from the reused clusters, but as
long as sampling and data collection are performed independently in two time
periods, there should not be any major differences in costs (and, for that matter,
not a major difference in costs cII

1 and cII
2 , except for inflation). Also, the costs

may depend on the cluster size Mi, as it may take more time and resources to
obtain maps and collect cluster level data for bigger clusters.

Let the population consist of N clusters in both time periods, and each
cluster consist of M individuals. Let the number of clusters used in only the
first time period be n1, only in the second period, n2, and the number of clusters
used in both waves, n0. Let the number of units sampled in each cluster be m1

in the first wave and m2 in the second wave. Then the total variable cost of the
survey is

C0 = cI
1n1 + cI

12n0 + cI
2n2 + cII

1 (n1 + n0)m1 + cII
2 (n2 + n0)m2 (6.1)

The sample designer wishes to minimize the variance of the difference of
ratio estimators (5.3):
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{n0, n1, n2,m1,m2} = arg min V
[ t[y(2)]
t[1(2)]

− t[y(1)]
t[1(1)]

]
(6.2)

Note that this is a rather artificial objective function that focuses solely on
the difference between the two sample means. A more realistic design would
be finding a balance between minimizing the contemporaneous and longitudi-
nal variances. This would make the optimization problem multicriterial and
thus substantially more difficult to handle. Note however that for the con-
temporaneous estimation, the cluster panel aspect would not matter: the vari-
ance of t[y(t)]/t[1(t)], t = 1, 2, will be the same for designs with different de-
gree of overlap, and hence the sample designer will choose the relation be-
tween n0, n1 and n2 based solely on the cluster panel aspect of variance of
t[y(2)]/t[1(2)]− t[y(1)]/t[1(1)]. The situation may be different for composite esti-
mators.

Note that the design is of the fixed size, so V
[
t[1(t)]

]
= 0, t = 1, 2. From the

results in two preceding sections, the variance in (6.2) is

V
[ t[y(2)]
t[1(2)]

− t[y(1)]
t[1(1)]

]
= V[t[y(2)]

T [1(2)]2
+ V[t[y(1)]

T [1(1)]2
− 2

Cov
[
t[y(2)], t[y(1)]

]
T [1(1)]T [1(2)]

=

=
N − (n1 + n0)
(n1 + n0)NM2

S2
1b +

1
NM

M −m1

m1
S̄2

1w+

+
N − (n2 + n0)
(n2 + n0)NM2

S2
2b +

1
NM

M −m2

m2
S̄2

2w − 2
n0ρ

IS1bS2b

(n1 + n0)(n2 + n0)M2
(6.3)

where the variance (4.16) was used for the first two terms, and

ρI =
Cov

[
Y

(2)
i· , Y

(1)
i·
]

M2S1bS2b
=

1
(N − 1)M2S1bS2b

N∑
i=1

(
Y

(2)
i· − Ȳ

(2)
i·
)(

Y
(1)
i· − Ȳ

(1)
i·
)

(6.4)

is the intertemporal correlation of the cluster totals. (Note that the covariance
term in the numerator is of order O(M2), as it is a sum of the cluster totals,
hence the scaling factor of M2 is in place in the denominator.) Also,

S̄2
tw =

1
N

N∑
i=1

S2
twi, t = 1, 2, . . . (6.5)

The minimization constraints are:

cI
1n1 + cI

12n0 + cI
2n2 + cII

1 (n1 + n0)m1 + cII
2 (n2 + n0)m2 ≤ C0, (6.6)

n0 ≥ 0, n1 ≥ 0, n2 ≥ 0 (6.7)

and with the corresponding Lagrange multipliers λ, λ0, λ1, λ2, the Lagrangian
function can be written down as a combination of (6.3), (6.6) and (6.7):
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L(n0, n1, n2,m1,m2;λ, λ0, λ1, λ2) =

=
( N

n1 + n0
− 1
) S2

1b

NM2
+

1
NM

(M

m1
− 1
)
S̄2

1w +
( N

n2 + n0
− 1
) S2

2b

NM2
+

+
1

NM

(M

m2
− 1
)
S̄2

2w −
2n0ρ

IS1bS2b

(n1 + n0)(n2 + n0)
+ λ0n0 + λ1n1 + λ2n2−

−λ
[
cI
1n1 + cI

12n0 + cI
2n2 + cII

1 (n1 + n0)m1 + cII
2 (n2 + n0)m2 − C0

]
→ min

(6.8)

The necessary conditions (Karush-Kuhn-Tucker conditions) for the constrained
minimum of (6.8) are (Di Pillo & Palagi 2002, Jahn 1996)

∂L

∂n0
= 0,

∂L

∂n1
= 0,

∂L

∂n2
= 0, (6.9)

∂L

∂m1
= 0,

∂L

∂m2
= 0, (6.10)

λ
[
cI
1n1 + cI

12n0 + cI
2n2 + cII

1 (n1 + n0)m1 + cII
2 (n2 + n0)m2 − C0

]
= 0, (6.11)

λ0n0 = 0, λ1n1 = 0, λ2n2 = 0 (6.12)

To solve for λ, let us take the derivatives w.r.t. m1, m2 in (6.10):

∂L

∂m1
= − 1

Nm2
1

S̄2
1w − λcII

1 (n1 + n0) = 0, (6.13)

∂L

∂m2
= − 1

Nm2
2

S̄2
2w − λcII

2 (n1 + n0) = 0, (6.14)

so

−λ =
S̄2

1w

Nm2
1c

II
1 (n1 + n0)

=
S̄2

2w

Nm2
2c

II
2 (n2 + n0)

> 0 (6.15)

as all terms in the right hand side are positive, provided there is any variation
in at least one cluster at each point in time. By (6.11), strict inequality for λ
means that the restriction is binding, or active, and the budget of the survey is
fully used.

Next, let us take the derivatives w.r.t. n1, n2, n0:

∂L

∂n1
= − S2

1b

M2(n1 + n0)2
+

2n0ρ
IS1bS2b

(n1 + n0)2(n2 + n0)M2
+ λ1 − λ(cI

1 + cII
1 m1) = 0,

(6.16)

∂L

∂n2
= − S2

2b

M2(n2 + n0)2
+

2n0ρ
IS1bS2b

(n1 + n0)(n2 + n0)2M2
+ λ2 − λ(cI

2 + cII
2 m1) = 0,

(6.17)
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−λ1 = − S2
1b

M2(n1 + n0)2
+

2n0ρ
IS1bS2b

(n1 + n0)2(n2 + n0)M2
+

S̄2
1w(cI

1 + cII
1 m1)

Nm2
1c

II
1 (n1 + n0)

,

(6.18)

−λ2 = − S2
2b

M2(n2 + n0)2
+

2n0ρ
IS1bS2b

(n1 + n0)(n2 + n0)2M2
+

S̄2
2w(cI

2 + cII
2 m2)

Nm2
2c

II
2 (n2 + n0)

,

(6.19)

∂L

∂n0
= − S2

1b

M2(n1 + n0)2
− S2

2b

M2(n2 + n0)2
+ λ0 − λ(cI

12 + cII
1 m1 + cII

2 m2)−

− 2ρIS1bS2b(n1n2 − n2
0)

(n1 + n0)2(n2 + n0)2M2
= 0, (6.20)

−λ0 = − S2
1b

M2(n1 + n0)2
− S2

2b

M2(n2 + n0)2
− 2ρIS1bS2b(n1n2 − n2

0)
(n1 + n0)2(n2 + n0)2M2

+

+
S̄1wS̄2w

Nm1m2(cII
1 cII

2 (n1 + n0)(n2 + n0))
1
2
(cI

12 + cII
1 m1 + cII

2 m2) = 0 (6.21)

The signs of λ1, λ2, λ0 cannot be determined, as the relative sizes of terms in
(6.18), (6.19), (6.21) vary, in general. Thus the only feasible way to solve (6.8)
is to go over conditions (6.12), find solutions for specific cases, and compare
them.

Taking into account the symmetry with respect to time and the fact that
(n0 + n1)(n0 + n2) > 0 (which means that a positive number of clusters are
indeed sampled, either repeatedly (n0) or independently (n1, n2)), the following
three cases are of the greatest interest:

Case 1: independent sampling n0 = 0, λ1 = λ2 = 0, n1, n2 > 0. No
common clusters are sampled in two periods of time; all of the sampling
is performed independently.

Case 2: cluster-panel design λ0 = 0, n1 = n2 = 0. All of the clusters
sampled in the first period are reused again in the second period.

Case 3: mixed design λ0 = λ1 = λ0 = 0, n0, n1, n2 > 0. At each time
period, the sample contains both clusters common to the two observation
periods, and independent wave-specific clusters.

6.1 Independent sampling

If the optimal design is such that the samples are taken independently in two
periods of time, so that n0 = 0, then also the Lagrange multipliers for constraints
on n1 and n2 are zero. (6.18) and (6.19) then give
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(6.22)
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The other two equations to close the system are the total cost equation (6.6)
and its Lagrange multiplier (6.15), which can be written as

cI
1n1 + cI

2n2 + cII
1 n1m1 + cII

2 n2m2 = C0, (6.24)
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=
S̄2

2w
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2 n2

(6.25)

Combining (6.22), (6.23) and (6.24), we obtain
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II
2

S̄2
2w

)
= C0 (6.26)

which gives the total “scale” of the survey.
To solve for the parameters of the design, let us first assume that the costs

and variances do not change between the two periods:
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b , S̄2
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Then m1 = m2 = m is found from
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(6.28)

Then also
n =

C0

2(cI + cIIm)
=

C0

2
[
cI + M

√
C0cIIS̄2

w/2NS2
b

] (6.29)

so both m and n increase as C0
1/2 for large surveys (although n ∝ C0 for smaller

ones).
The variance of the difference estimator given by (6.3) is
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(6.30)

where the (conservative) approximation is made by setting the finite population
corrections to zero (i.e., n � N , m � M), and the subindex e, i stands for
“equal conditions — independent samples”.

Let us go back to the situation when the population parameters and costs
change over time. Rephrasing (6.26) gives
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Denoting
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we get
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or
C1(A1 + B1m1)

m4
1

=
C2(A2 + B2m2)

m4
2

(6.34)

This is a quartic equation on m2 with no explicit closed form solution. If

A2 = A1 + δA, B2 = B1 + δB , C2 = C1 + δC , m2 = m1(1 + δm), (6.35)

where δA, δB , δC depend on the changes in costs and population variances
between the two rounds of the survey, and δZ � Z denotes a variation in Z of
small magnitude, then to the first order in δ’s,
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(6.36)

which can be plugged to (6.31), using (6.28) for m1. Taking everything together
gives
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m2 = m1(1 + δm) ≈ m
(
1− ∆

4
)
(1 + δm) (6.39)

and further n1, n2 found from (6.22) and (6.23).
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6.2 Cluster-panel design

Let us now study the design at the opposite end of the spectrum. If the design
with n1 = n2 = 0 is optimal, then from KKT conditions (6.12), λ0 = 0. With
those conditions, the system of equations to find the parameters of the optimal
design is
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Then
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Again, the number of units per cluster increases with the budget as
√

C0,
and the number of clusters sampled increases as C0 for small surveys, and as√

C0, for large ones. The variance of the difference estimator can now be found
simplifying (6.3) as
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(6.44)

Let us now invoke the assumption of no changes in population variances and
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prices between two time periods. Then
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and the variance (6.44) becomes
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where the subindex e, p stands for “equal conditions — panel clusters”.

6.3 Comparison of the independent
and panel-cluster designs

We now can compare (6.30) and (6.46). The difference of two variances is
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The last term is always negative, and the cluster-panel design is guaranteed to
be more efficient when cI

12 < 2cI, i.e., when revising the clusters indeed provides
cost savings. Note also that as ρI → 1 (i.e., the characteristic is persistent and
does not change much between rounds), the first term goes to zero, while the
second term converes to a fixed negative quantity, so the cluster-panel design is
more efficient even when the re-use of clusters is more expensive than sampling
new clusters. Also, the second term decreases slower than the first one with the
size of the survey, and the cluster-panel design may be more variance-efficient
even when it is slightly more expensive to collect the data in that manner:
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This preference for a panel-cluster designs will be stronger for larger surveys
with higher total budget C0.
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6.4 Intermediate case

In this section, we consider a design that has all of n0, n1, n2 > 0. For this
design to be optimal, the corresponding Lagrange multipliers have to be zero:

λ0 = λ1 = λ2 = 0 (6.49)

Let us consider the implications for the first order conditions (6.18)–(6.21):

0 = − S2
1b

M2(n1 + n0)
+

2n0ρ
IS1bS2b

(n1 + n0)(n2 + n0)M2
+

S̄2
1w(cI

1 + cII
1 m1)

Nm2
1c

II
1

, (6.50)

0 = − S2
2b

M2(n2 + n0)
+

2n0ρ
IS1bS2b

(n1 + n0)(n2 + n0)M2
+

S̄2
2w(cI

2 + cII
2 m2)

Nm2
2c

II
2

, (6.51)

0 = − S2
1b

M2(n1 + n0)2
− S2

2b

M2(n2 + n0)2
− 2ρIS1bS2b(n1n2 − n2

0)
(n1 + n0)2(n2 + n0)2M2

+

+
S̄1wS̄2w

Nm1m2(cII
1 cII

2 (n1 + n0)(n2 + n0))
1
2
(cI

12 + cII
1 m1 + cII

2 m2) = 0 (6.52)

The remaining equations to close the system are (6.6) and (6.15):
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As the problem appears intractable, let us impose the equality of the two
periods restrictions (6.27). Then by symmetry of the problem, n1 = n2 ≡ n,
m1 = m2 ≡ m, and
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2cIn + cI
12n0 + 2cII(n + n0)m = C0 (6.57)

Introducing
ν =

n0

n
, π−1 = 1 + ν−1 (6.58)

and dividing the first equation by the second one, one gets

m =
cI(1 + ν + ρI − ρIν)− cI

12(1 + ν − 2ρIν)
cII(1 + ν − 3ρIν − ρI)

≡ A + Bν
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,
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12, B = cI(1− ρI)− cI

12(1− 2ρI),

C = cII(1− ρI), D = cII(1− 3ρI) (6.59)

The coefficients A, B, C and D as functions of ρI are shown on Fig. 1 (a).
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For m to be positive, (A + Bν)(C + Dν) > 0. The zeroes of the latter
polynomial are −A/B and −C/D. Let us study those expressions as functions
of ρI to identify the regions where m can be positive.

For ρI = 0, A = B = cI − cI
12 < 0, so −A/B = −1. Also, C = D = cII, so

−C/D = −1 as well. In this case m = A/C = (cI − cI
12)/cII < 0, so the mixed

design cannot be optimal.
As ρI increases, A and B increase, while C and D decrease. By continuity,

the “optimal” m continues to be negative in the neighborhood of zero, thus the
mixed design cannot be optimal near ρI = 0. The sign of m changes when B(ρI)
crosses zero. It occurs when

ρ = ρ1 ≡
cI
12 − cI

2cI
12 − cI

(6.60)

If we assume
cI < cI

12 < 2cI (6.61)

(i.e., the cost of revisiting the cluster used before is greater than 0, but less than
the cost of sampling the new cluster), then it can be shown that ρ1 < 1/3 ≡ ρ2,
the point where the line D crosses zero. Thus for ρ1 < ρ ≤ ρ2, both C + Dν is
positive, and A + Bν is positive for large enough ν, namely, ν ≥ −A/B.

As ρI grows further, D crosses zero at ρ = ρ2, and the root −C/D flips its
sign. Now, C + Dν is only positive for small enough ν, namely, ν < −C/D.
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Figure 1: (a) Coefficients A,B,C, D as functions of ρ; (b) Critical points of ν
and feasible regions.

27



Hence the feasible values of ν are in the range −A/B ≤ ν < −C/D.
A pictorial representation of −A/B and −C/D as functions of ρI are given

on Fig. 1 (b). The shaded region is the range of ν’s for which m can be positive,
according to (6.59).

Two more characteristic values of ρI may be of interest that correspond to
ν = 1 (i.e., n0 = n1 = n2, and the sample is split 50-50 between the independent
and panel components). The lower bound of correlations at which this can
happen is given by A = −B, which is solved by

ρ3 ≡
cI
12 − cI

cI
12

, ρ1 < ρ3 <
1
2

(6.62)

The upper bound is given by the solution to C = −D, and that is ρ4 = 1/2.
The line corresponding to ν = 1 (i.e. the sample is split 50-50 between the new
and repeated clusters) is also shown on Fig. 1 (b).

Finally, the last characteristic value of ρI is the one where A changes its sign:
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cI
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cI
12
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, ρ3 < ρ5 < 1 (6.63)

The inequalities in (6.62) and (6.63) follow from (6.61).
Let us go back to (6.55)–(6.57). Subtracting (6.56) from (6.55), one gets

S̄2
w(c1

12 − cI + cIIm)
Nm2

=
2S2

b

M2(n + n0)
,

n = m2 2S2
b N

S̄2
wM2(1 + ν)(c1

12 − cI + cIIm)
=

=
(A + Bν)2

C + Dν

2S2
b N

S̄2
wM2(1 + ν)((c1

12 − cI)(C + Dν) + cII(A + Bν))
(6.64)

Plugging this to (6.57) gives
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Denoting the constant in front of 1 + ν in the LHS by Q, one gets the
following equation for ν which is a fourth order polynomial in ν:

P (ν; ρI) ≡ Q(1 + ν)(C + Dν)2
[
(c1

12 − cI)(C + Dν) + cII(A + Bν)
]
−

−(A + Bν)2
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12ν)(C + Dν) + 2cII(1 + ν)(A + Bν)
]

= 0 (6.66)

It is easy to establish that a solution exists in the feasible domain of Fig. 1 (b).
This domain corresponds to values of ν such that both A + Bν and C + Dν
are positive. Hence, both terms in the square brackets are positive. Further,
P (−A/B; ρI) = Q(1 + ν)(C + Dν)3(cI

12 − cI) > 0 whenever C + Dν is positive.
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For ρ1 < ρI < 1/3, let us look at the behavior at infinity: P (+∞; ρI) ∼{
QD2

[
(cI

12− cI)D+ cIIB
]
−B2

[
cI
12D+2cIIB

]}
ν4. For ρI close to ρ1, B is small,

and P (+∞; ρ1+0) can be further reduced to QD2(cI
12−cI)Dν4 > 0. For ρI close

to ρ2 = 1/3, D is small, and P (+∞; ρ2 − 0) reduces to −2cIIB3ν4 < 0. Thus
there is an intermediate ρ6 such that P (+∞; ρ6) = O(ν3) with the coefficient
of ν4 equal to zero. This also makes sense since for ρI = ρ1 + 0, the feasible
regions have high n and m, which makes the design overly expensive.

For ρI > 1/3, it is easy to see that P (−C/D; ρI) < 0, and by continuity
of P (·), there is a root between −A/B and −C/D. The restriction ν > 0 will
also come to play for high values of the correlation: P (0; ρI) = QC2

[
(c1

12 −
cI)C + cIIA

]
− 2A2(cIC + cIIA) Clearly, P (0; ρ5) > 0 as already established,

and P (0; 1) < 0, so by continuity of P (·) with respect to ρI there exists an
intermediate ρ7 for which P (0; ρ7) = 0.

Hence the following existence result is established:

∃ ρ6 : ρ1 < ρ6 < ρ2 ∃ ρ7 : ρ5 < ρ7 < 1 ∀ρ6 < ρI ≤ ρ7 ∃ ν : P (ν; ρI) = 0 (6.67)

For ρI < ρ1, the necessary conditions of the Lagrange multiplier problem
are incompatible with one another, and hence the optimal design is one of the
independent sampling or panel-cluster designs. Also for ρI > 1/2, the optimal
design has ν < 1, i.e., n0 < n, which seems counterintuitive.

6.5 Numerical illustration

Without an analytical solution, it is impossible to compare the results of the
analysis of the three designs. Let us then develop a simple numerical example
to solve (6.66) for the optimal mixed design, and compare the results with the
analytical cases of longitudinal and independent sampling designs.

Let us use the following set of parameters:

N = 2000, M = 200, Sb = 1.5, Sw = 1,

cI = 1, cI
12 = 1.7, cII = 0.25, C0 = 500, (6.68)

In computing optimal designs, the practical restrictions were imposed:

2 ≤ m ≤ M,

2 ≤ n ≤ N for independent clusters design,

2 ≤ n0 ≤ N for panel clusters design,

1 ≤ n, n0 ≤ N for mixed design (6.69)

The action of those constraints produced some roughness in the graphs that
follow, as well slight deviations in the budget (within a margin of 2 for the
cluster-panel design, and with a wider range of fluctuations between 488 and
535 for the mixed design. The latter value is observed in the neighborhood of
ρI = 1 − 0 where the mixed design starts showing irregular behavior as it hits
the constraints (6.69).
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The design optimal for estimation of the mean on half budget, or the elemen-
tary estimate (the independent clusters design) has 10 clusters with 96 units per
cluster. The number of clusters sampled is shown on Fig. 2, and cluster sizes,
on Fig. 3. The characteristic intertemporal correlations relevant for the mixed
design are:

ρ1 = 0.292, ρ2 = 1/3, ρ3 = 0.412, ρ4 = 0.5, ρ5 = 0.7, ρ6 = 0.663, ρ7 = 0.997

The horizontal solid line on Fig. 2 is the number of independent clusters for
independent design; i.e., 10. The downward sloping solid line is the number
of overlapping clusters in the cluster-panel design. As ρI increases, the design
tends to sacrifice n0 in favor of m, so that the cluster means and differences
are more accurately estimated. In the limit of ρI → 1, it suffices to have 1
cluster to estimate the change; however at least two clusters are to be taken to
estimate the components of variance; and in fact n0 = 5 clusters are sampled
for ρI > 0.72 as long as the optimal cluster size hits the restriction m ≤ M .
The mixed design has only slightly varying number of clusters (n+n0 fluctuates
between 27 and 31), with the changes in ρI influencing allocation between the
independent and the panel portions of the clusters.

The cluster sizes on Fig. 3 show the differences between the designs. The
panel cluster designs are equivalent to the independent cluster designs (except
for slightly larger cluster sizes m = 97 due to savings offered by the cluster panel
designs of the magnitude 2cI − cI

12), but later try to get as most information
from few clusters as possible as ρI approaches 1, and due to cluster size limits,
m = 197 ≈ M for ρI > 0.72. Interestingly, the cluster size remains fixed for the
mixed design in the range between 32 and 34 for most of the correlation range.
For ρI > 0.97, the mixed design shows irregular behavior, as the optimal design
requires n0 < 1, which should have made it an independent cluster design that
can no longer be called mixed.

The total sample sizes are approximately constant for the mixed designs
(fluctuating between 896 and 918 for ρI < 0.4, and between 891 and 896 for
0.4 < ρI < 0.97), and grow somewhat for the panel cluster designs (from 970 at
0 < ρI < 0.14, with n0 = 10 clusters, to 985 at ρ > 0.72 with n0 = 5 clusters).

Finally, the most important plot is that of the variance of the elementary
estimate given on Fig. 4. It clearly shows the advantage of the cluster-panel
design over other options. The design effects follow a similar pattern, with the
reference line of DEFF for the independent cluster design being 14.3, and the
DEFF for the cluster-panel design falling from that figure down to 0.12.

As an overall conclusion of this small numerical illustration, it appears that
the cluster-panel design is the most variance-efficient for a given cost.

6.6 Remarks

One of the assumptions used in deriving the above results was that (the compo-
sition of) the population itself does not change: no units leave the population,
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Figure 2: Number of clusters as a function of ρI.
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Figure 3: The size of a cluster m as a function of ρI.
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and no new units appear The characteristics Y
(1)
ij , Y

(2)
ij may be change, how-

ever. This is quite a restrictive assumption for many practical situations, and
the sample designer might still want to include new clusters into the second
wave of data collection if the population has changed between the two waves.
Then the new clusters can be joined into a separate stratum, and a clustered
sample can be taken from that stratum. Also, the dynamic measurement effects
such as conditioning and time in sample lead to rotation bias, so it might be
beneficial to provide at least some rotation of the PSUs. For the DHS studies,
in particular, the first argument (coverage) is likely to be more important than
the second one (time in sample) due to a substantial time between the waves of
the survey (about 5 years).

7 Empirical illustration

The empirical illustration of the differences in designs is carried out with DHS
data from Bangladesh, 1996 and 2000 data. Table 1 lists the results for different
designs, and for two different measures, one of which (contraceptive use in mar-
ried women) has a lot of individual level variability with little between cluster
variability, and thus moderate design effects, and the other one (access to tap
water) has extremely strong patterns among communities. ∆-näıve estimator of
difference is the one that does not take into account the same clusters. ∆-design
is the estimator that does take into account that the same clusters were used
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Figure 4: V d[ȳ(2) − ȳ(1)] as a function of ρI.
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Table 1: Differences in variance estimates in different design specifications.

Item Estimate S.e. DEFF
Contraceptive prevalence
1996 49.24% 1.098% 4.072
2000 53.77% 0.941% 3.466
∆-näıve 4.53% 1.446% 3.789
∆-design 4.53% 1.431% 3.714
Longitudinal effect 1.020
Access to tap water
1996 5.24% 0.946% 85.77
2000 6.17% 1.039% 101.24
∆-näıve 0.928% 1.422% 95.91
∆-design 0.928% 1.405% 93.56
Longitudinal effect 0.976
Source: Bangladesh DHS, 1996 and 2000; authors’ calculations.

in two years. The line “Longitudinal effect” is the difference in variances of the
∆-näıve and ∆-design estimators. There does not seem to be much difference
between the two, as it is within 3% for both measures. This is in accordance
with the above theoretical argument that the design effect is close to 1 for a
study with a large number of clusters. Also, there is relatively modest overlap
in clusters: out of 313 clusters in the first study, only 137 were used for the
consecutive study, and there were 204 new clusters.

Appendix A gives an outline of Stata code used to specify the two alternative
designs, and to estimate the difference of interest appropriately for those designs.

8 Simulation study

A small simulation was conducted to study the performance of the two estima-
tors, ∆-näıve and ∆-design, as described in the previous section. The population
consisted of 50 strata with means µ

(1)
h = exp[0.01(h − 1)], h = 1, . . . , 50 in the

first period, so the means were shifting from 1.000 to 1.632. In the second
period, there was growth in some strata: µ

(1)
h = µ

(1)
h for the first 20 strata,

µ
(1)
h = µ

(1)
h + 0.25 for the next 20 strata, and µ

(1)
h = µ

(1)
h + 0.5 for the last 10

strata, so that the total difference is 0 · 0.4 + 0.25 · 0.4 + 0.5 · 0.2 = 0.2. Each
stratum consisted of 40 clusters of 500 units each. The variances within and
between clusters, as well as the intertemporal correlations of the cluster means,
were varying in the following ranges:

Sb ∈ {0.1, 0.3, 1.0}, Sw ∈ {0.2, 0.5, 1.5}, ρI ∈ {0, 0.25, 0.5, 0.75}

The cluster means were sampled from a normal population, and then rescaled
to have a finite population mean of 0 and variance of S2

b . Likewise, the units
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were sampled from a normal population and rescaled to have a finite population
mean of 0 and variance of S2

w.
The number of clusters sampled varied between 2 and 20. For settings with

5 or less clusters sampled, each possible rearrangement into n0, n1 and n2 was
entertained. For settings with 10, 15 or 20 clusters, the number of common
clusters n0 and unique clusters n1 = n2 were varying in steps of 5. Finally, the
number of units m1 = m2 = m sampled from each cluster was 10, 20, or 50.

For each combinations of the settings described above, 39 Monte Carlo sam-
ples from the specific finite population were taken. This results in 126,360 total
simulated samples for 3240 combinations of settings.

For each of those unique settings, the empirical variance of the difference
estimates was found based on 39 simulated samples. The empirical design effect
due to repeated use of the clusters (longitudinal effect) was defined as the ratio
of the empirical variance of the difference estimate to the variance with the
same parameters of the population (Sb, Sw, ρI), same sample size (n and m),
but with zero overlap (independent sampling on each occasion).

The (asymptotic) functional form of the design effect is given by (5.15).
Define

z =
ρπ

n
(8.1)

The plot of the empirical DEFFs against z is given on Fig. 5. The agreement
is not very strong; the R2 in the linear regression is 0.13, and it goes up to
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F
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0 .1 .2 .3 .4
z

Figure 5: Hypothesized vs. empirical design effects. Solid line, lowess fit. Dot-
ted line, prediction fit.
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0.15 with a semiparametric (spline) regression. It is unclear what part of the
regression error is due to simulation error, supposedly large due to small Monte
Carlo sample for each setting (39 repetitions). The regression line shown as
dotted is (s.e.s in parentheses, corrected for clustering on the same population)

DEFF = 0.9824
(0.0120)

− 1.8572
(0.2608)

z

The DEFF is not statistically significantly different from 1 for z = 0, and it does
decrease linearly in the neighborhood of zero thus confirming the functional form
of the DEFF behavior in finite samples.

The second part of the simulation consisted of taking samples from the finite
population with Sb = 0.2, Sw = 1 and ρI = 0.5. For this setting, the intraclass
correlation (4.15) is low at about 0.04, mostly due to large M = 500. With
the same sampling designs (n between 2 and 20, m between 10 and 50, etc.),
199 samples were taken for each combination that allowed for more accurate
estimation of the variances.

The results reported below are for variances of the difference estimator
d[y(2) − y(1)], and various estimators of this variance. Table 2 reports the ba-
sic variances. The first column gives the sampling settings. The next four
columns report the observed Monte Carlo standard deviation and the Monte
Carlo means of the standard errors as reported by SRS design, ∆-näıve and
∆-design estimators of variance.

Table 2: Simulation results for estimator variances.

Sampling setting MC s.d. SRS s.e. ∆-näıve ∆-design
m = 10
n0 = 0;n1, n2 = 2 0.05073 0.04748 0.06945 0.06860
n0 = 2;n1, n2 = 0 0.04985 0.04735 0.06967 0.04836
n0 = 0;n1, n2 = 20 0.01471 0.01498 0.02078 0.01834
n0 = 20;n1, n2 = 0 0.01403 0.01498 0.02080 0.01537
m = 50
n0 = 0;n1, n2 = 2 0.03522 0.02116 0.05602 0.05513
n0 = 2;n1, n2 = 0 0.02677 0.02119 0.05721 0.02762
n0 = 0;n1, n2 = 20 0.00852 0.00670 0.01645 0.01325
n0 = 20;n1, n2 = 0 0.00745 0.00670 0.01646 0.00871

A few common features can be deducted from Table 2. The SRS estimator
is almost always biased downwards, with the largest biases for high m and low
n. This is typically a poor sampling design for a positive intraclass correlation,
and will probably be avoided in practical situations. The ∆-design estimator is
always conservative with a relative bias around 10 to 15% when the situation
calls for the design appropriate estimator (i.e, n0 > 0, n1 = n2 = 0). The
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Table 3: Design effects.

Sampling setting Reported DEFFs Monte Carlo DEFFs
Total IQR Repeated IQR Total Repeated

m = 10
n0 = 0, n1 = n2 = 2 2.0914 1.966–2.211 0.9760 0.959–0.997 1.3053
n0 = 2, n1 = n2 = 0 1.0547 0.888–1.196 0.4877 0.425–0.557 1.2294 0.9657
n0 = 0, n1 = n2 = 20 1.4982 1.468–1.535 0.7789 0.764–0.793 0.9306
n0 = 20, n1 = n2 = 0 1.0532 1.024–1.080 0.5465 0.531–0.563 0.7692 0.9087
m = 50
n0 = 0, n1 = n2 = 2 6.7962 6.460–7.163 0.9686 0.953–0.987 7.6714
n0 = 2, n1 = n2 = 0 1.7165 1.465–1.934 0.2363 0.203–0.263 2.5483 0.5778
n0 = 0, n1 = n2 = 20 3.9189 3.837–4.007 0.6501 0.637–0.661 2.6194
n0 = 20, n1 = n2 = 0 1.6921 1.639–1.746 0.2802 0.272–0.289 1.5347 0.7651

∆-näıve estimator is always biased upwards, as it assumes more clustering than
there is in the data. In fact, when n0 = 0 and no clusters are sampled in common
on purpose, the two estimators coincide in overly conservative performance.
There still might be random overlap of clusters due to sampling, and hence
∆-design estimator is usually a little bit smaller than the ∆-näıve estimator.

Table 3 summarizes the design effects. The first four columns give the re-
ported DEFF for the total effect (the ratio of SRS variance to the ∆-design vari-
ance estimates) and repeated clustering effect (the ratio of ∆-naive to ∆-design
variance estimates). Note that those design effects also account for stratifica-
tion. When n0 = 0, the longitudinal/repeated cluster sampling design effect
must be 1. Empirically, it is lower than 1 for the same reason of random over-
lap between clusters, and the difference from 1 is greater for sampling designs
with larger number of sampled clusters n1 = n2 (20 vs. 2), and hence higher
probability of the overlap.

The empirical, or Monte Carlo, design effects are defined here as follows: the
total effect is the ratio of the Monte Carlo variance (column 2 of Table 2) to the
SRS variance (column 3 of Table 2); the longitudinal design effect is the ratio
of the empirical variances in Table 2 of the design with no overlap (n0 = 0) to
the empirical variance of the design with complete overlap (n0 = 2 or n0 = 20),
i.e., the variance in the second row to the variance in the first row, the variance
of the fourth row to the variance in the third row, etc. We see that all reported
design effects are in fact quite misleading: none of the Monte Carlo DEFFs fall
into the IQR of the reported DEFFs, neither for the total design effect, nor for
the longitudinal design effect.

The evidence on behavior of the design effect with the number of clusters,
predicted to be of the functional form of 1−Aρ/n, is mixed. With small number
of observations per cluster (m = 10), the effect of increase in the number of
clusters is to decrease the design effect moving it away from 1. With large
number of observations per cluster (m = 50), which is more consistent with the
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asymptotic derivations outlined above, the design effect increases and gets closer
to 1 as the number of sampled clusters increases. Again, the design effects here
may be confounded with the stratification effect.

9 Conclusions

This paper has analyzed the effect of re-using the clusters in repeated clustered
surveys. The two main results of the paper are (i) that the design effect of cor-
rectly specifying the repeated use of clusters vs. assuming the two samples were
taken independently are of the order O(ρπ/n) where n is the number of clusters,
ρ is the intertemporal correlation, and π is the degree of overlap between two
consecutive samples; and (ii) that for a given budget of the survey, the variance
of the elementary estimator (difference in contemporaneous means) is smaller
for the design that reuses clusters (referred to as cluster-panel designs) are more
variance efficient for vs. the design where the samples are taken anew, with the
difference in variances that depends on the intertemporal correlation and the
size of the survey. The considerations in favor of the panel-cluster designs come
from the logistical side rather than from variance considerations, and a sample
designer who knows that the characteristic of interest is going to have some
degree of persistence over time will choose the cluster-panel design, unless it is
known that the cost of re-visiting the first wave clusters are prohibitively high.
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A Outline of Stata code

The substantial part of Stata code (version 8) does the following:

1. creates year variable for two time periods;

2. sets the survey data configuration appropriately for the ∆-näıve estimator:
egen psuXyear = group(psu year)

svyset [pw=weight ] , psu(psuXyear)

3. the difference of interest can be obtained in two possible ways: as the
difference in means:
svymean depvar, by(year) deff
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lincom depvar[2000] - depvar[1996], deff
or as the regression coefficient of a dummy variable:
xi : svyreg depvar i.year, deff

4. sets the survey data configuration appropriately for the ∆-design estima-
tor:
svyset [pw=weight ] , psu(psu)

5. repeats step 3 for this design setting.

6. The longitudinal design effect is finally obtained as the ratio of two esti-
matores of the variances of the difference.
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